''' @作者:你遇了我321640253@qq.com @文件:VGG16Net.py @创建时间:2023 11 20 模型网络结构 ''' import torch from torch import nn from torchsummary import summary # 定义 VGG16 网络结构 class VGG16(nn.Module): def __init__(self): super(VGG16, self).__init__() self.conv1 = nn.Sequential( #32*1*28*28 nn.Conv2d(1, 16, kernel_size=3, padding=1), #16*28*28 nn.ReLU(), nn.Conv2d(16, 16, kernel_size=3, padding=1), #16*28*28 nn.ReLU() ) self.conv2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(32, 32, kernel_size=3, padding=1), nn.ReLU() ) self.conv3 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.ReLU() ) self.conv4 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, padding=1), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, padding=1), nn.ReLU() ) self.fc = nn.Linear(128*28*28, 100) self.fc1 = nn.Linear(100, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = nn.Flatten()(x) x = self.fc(x) x = self.fc1(x) return x def getSummary(size:tuple): model = VGG16() model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu')) summary(model, size)