更新预测功能
This commit is contained in:
157
utils/voc_annotation.py
Normal file
157
utils/voc_annotation.py
Normal file
@@ -0,0 +1,157 @@
|
||||
import os
|
||||
import random
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
import numpy as np
|
||||
import sys,os
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from utils import get_classes
|
||||
import configparser
|
||||
conf=configparser.ConfigParser()
|
||||
conf.read('config.ini',encoding='utf-8')
|
||||
#--------------------------------------------------------------------------------------------------------------------------------#
|
||||
# annotation_mode用于指定该文件运行时计算的内容
|
||||
# annotation_mode为0代表整个标签处理过程,包括获得VOCdevkit/VOC2007/ImageSets里面的txt以及训练用的2007_train.txt、2007_val.txt
|
||||
# annotation_mode为1代表获得VOCdevkit/VOC2007/ImageSets里面的txt
|
||||
# annotation_mode为2代表获得训练用的2007_train.txt、2007_val.txt
|
||||
#--------------------------------------------------------------------------------------------------------------------------------#
|
||||
annotation_mode = 0
|
||||
#-------------------------------------------------------------------#
|
||||
# 必须要修改,用于生成2007_train.txt、2007_val.txt的目标信息
|
||||
# 与训练和预测所用的classes_path一致即可
|
||||
# 如果生成的2007_train.txt里面没有目标信息
|
||||
# 那么就是因为classes没有设定正确
|
||||
# 仅在annotation_mode为0和2的时候有效
|
||||
#-------------------------------------------------------------------#
|
||||
classes_path = conf.get('dataset', 'classes_path')
|
||||
#--------------------------------------------------------------------------------------------------------------------------------#
|
||||
# trainval_percent用于指定(训练集+验证集)与测试集的比例,默认情况下 (训练集+验证集):测试集 = 9:1
|
||||
# train_percent用于指定(训练集+验证集)中训练集与验证集的比例,默认情况下 训练集:验证集 = 9:1
|
||||
# 仅在annotation_mode为0和1的时候有效
|
||||
#--------------------------------------------------------------------------------------------------------------------------------#
|
||||
trainval_percent = 0.9
|
||||
train_percent = 0.9
|
||||
#-------------------------------------------------------#
|
||||
# 指向VOC数据集所在的文件夹
|
||||
# 默认指向根目录下的VOC数据集
|
||||
#-------------------------------------------------------#
|
||||
VOCdevkit_path = r'database/Train'
|
||||
|
||||
VOCdevkit_sets = [('2007', 'train'), ('2007', 'val')]
|
||||
classes, _ = get_classes(classes_path)
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 统计目标数量
|
||||
#-------------------------------------------------------#
|
||||
photo_nums = np.zeros(len(VOCdevkit_sets))
|
||||
nums = np.zeros(len(classes))
|
||||
def convert_annotation(year, image_id, list_file):
|
||||
in_file = open(os.path.join(VOCdevkit_path, 'Annotations/%s.xml'%(image_id)), encoding='utf-8')
|
||||
tree=ET.parse(in_file)
|
||||
root = tree.getroot()
|
||||
|
||||
for obj in root.iter('object'):
|
||||
difficult = 0
|
||||
if obj.find('difficult')!=None:
|
||||
difficult = obj.find('difficult').text
|
||||
cls = obj.find('name').text
|
||||
if cls not in classes or int(difficult)==1:
|
||||
continue
|
||||
cls_id = classes.index(cls)
|
||||
xmlbox = obj.find('bndbox')
|
||||
b = (int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)), int(float(xmlbox.find('xmax').text)), int(float(xmlbox.find('ymax').text)))
|
||||
list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id))
|
||||
|
||||
nums[classes.index(cls)] = nums[classes.index(cls)] + 1
|
||||
|
||||
if __name__ == "__main__":
|
||||
random.seed(0)
|
||||
if " " in os.path.abspath(VOCdevkit_path):
|
||||
raise ValueError("数据集存放的文件夹路径与图片名称中不可以存在空格,否则会影响正常的模型训练,请注意修改。")
|
||||
|
||||
if annotation_mode == 0 or annotation_mode == 1:
|
||||
print("Generate txt in ImageSets.")
|
||||
xmlfilepath = os.path.join(VOCdevkit_path, 'Annotations')
|
||||
saveBasePath = os.path.join(VOCdevkit_path, 'ImageSets/Main')
|
||||
temp_xml = os.listdir(xmlfilepath)
|
||||
total_xml = []
|
||||
for xml in temp_xml:
|
||||
if xml.endswith(".xml"):
|
||||
total_xml.append(xml)
|
||||
|
||||
num = len(total_xml)
|
||||
list = range(num)
|
||||
tv = int(num*trainval_percent)
|
||||
tr = int(tv*train_percent)
|
||||
trainval= random.sample(list,tv)
|
||||
train = random.sample(trainval,tr)
|
||||
|
||||
print("train and val size",tv)
|
||||
print("train size",tr)
|
||||
ftrainval = open(os.path.join(saveBasePath,'trainval.txt'), 'w')
|
||||
ftest = open(os.path.join(saveBasePath,'test.txt'), 'w')
|
||||
ftrain = open(os.path.join(saveBasePath,'train.txt'), 'w')
|
||||
fval = open(os.path.join(saveBasePath,'val.txt'), 'w')
|
||||
|
||||
for i in list:
|
||||
name=total_xml[i][:-4]+'\n'
|
||||
if i in trainval:
|
||||
ftrainval.write(name)
|
||||
if i in train:
|
||||
ftrain.write(name)
|
||||
else:
|
||||
fval.write(name)
|
||||
else:
|
||||
ftest.write(name)
|
||||
|
||||
ftrainval.close()
|
||||
ftrain.close()
|
||||
fval.close()
|
||||
ftest.close()
|
||||
print("Generate txt in ImageSets done.")
|
||||
|
||||
if annotation_mode == 0 or annotation_mode == 2:
|
||||
print("Generate 2007_train.txt and 2007_val.txt for train.")
|
||||
type_index = 0
|
||||
for year, image_set in VOCdevkit_sets:
|
||||
image_ids = open(os.path.join(VOCdevkit_path, 'ImageSets/Main/%s.txt'%(image_set)), encoding='utf-8').read().strip().split()
|
||||
list_file = open('model_data/%s_%s.txt'%(year, image_set), 'w', encoding='utf-8')
|
||||
for image_id in image_ids:
|
||||
list_file.write('%s/JPEGImages/%s.png'%(os.path.abspath(VOCdevkit_path), image_id))
|
||||
|
||||
convert_annotation(year, image_id, list_file)
|
||||
list_file.write('\n')
|
||||
photo_nums[type_index] = len(image_ids)
|
||||
type_index += 1
|
||||
list_file.close()
|
||||
print("Generate 2007_train.txt and 2007_val.txt for train done.")
|
||||
|
||||
def printTable(List1, List2):
|
||||
for i in range(len(List1[0])):
|
||||
print("|", end=' ')
|
||||
for j in range(len(List1)):
|
||||
print(List1[j][i].rjust(int(List2[j])), end=' ')
|
||||
print("|", end=' ')
|
||||
print()
|
||||
|
||||
str_nums = [str(int(x)) for x in nums]
|
||||
tableData = [
|
||||
classes, str_nums
|
||||
]
|
||||
colWidths = [0]*len(tableData)
|
||||
len1 = 0
|
||||
for i in range(len(tableData)):
|
||||
for j in range(len(tableData[i])):
|
||||
if len(tableData[i][j]) > colWidths[i]:
|
||||
colWidths[i] = len(tableData[i][j])
|
||||
printTable(tableData, colWidths)
|
||||
|
||||
if photo_nums[0] <= 500:
|
||||
print("训练集数量小于500,属于较小的数据量,请注意设置较大的训练世代(Epoch)以满足足够的梯度下降次数(Step)。")
|
||||
|
||||
if np.sum(nums) == 0:
|
||||
print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
|
||||
print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
|
||||
print("在数据集中并未获得任何目标,请注意修改classes_path对应自己的数据集,并且保证标签名字正确,否则训练将会没有任何效果!")
|
||||
print("(重要的事情说三遍)。")
|
||||
Reference in New Issue
Block a user