Initial
This commit is contained in:
		
							
								
								
									
										177
									
								
								network/CSPdarknet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										177
									
								
								network/CSPdarknet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,177 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
|  | ||||
| class SiLU(nn.Module): | ||||
|     @staticmethod | ||||
|     def forward(x): | ||||
|         return x * torch.sigmoid(x) | ||||
|  | ||||
| def autopad(k, p=None): | ||||
|     if p is None: | ||||
|         p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  | ||||
|     return p | ||||
|  | ||||
| class Focus(nn.Module): | ||||
|     def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups | ||||
|         super(Focus, self).__init__() | ||||
|         self.conv = Conv(c1 * 4, c2, k, s, p, g, act) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         # 320, 320, 12 => 320, 320, 64 | ||||
|         return self.conv( | ||||
|             # 640, 640, 3 => 320, 320, 12 | ||||
|             torch.cat( | ||||
|                 [ | ||||
|                     x[..., ::2, ::2],  | ||||
|                     x[..., 1::2, ::2],  | ||||
|                     x[..., ::2, 1::2],  | ||||
|                     x[..., 1::2, 1::2] | ||||
|                 ], 1 | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
| class Conv(nn.Module): | ||||
|     def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): | ||||
|         super(Conv, self).__init__() | ||||
|         self.conv   = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | ||||
|         self.bn     = nn.BatchNorm2d(c2, eps=0.001, momentum=0.03) | ||||
|         self.act    = SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.act(self.bn(self.conv(x))) | ||||
|  | ||||
|     def fuseforward(self, x): | ||||
|         return self.act(self.conv(x)) | ||||
|  | ||||
| class Bottleneck(nn.Module): | ||||
|     # Standard bottleneck | ||||
|     def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion | ||||
|         super(Bottleneck, self).__init__() | ||||
|         c_ = int(c2 * e)  # hidden channels | ||||
|         self.cv1 = Conv(c1, c_, 1, 1) | ||||
|         self.cv2 = Conv(c_, c2, 3, 1, g=g) | ||||
|         self.add = shortcut and c1 == c2 | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) | ||||
|  | ||||
| class C3(nn.Module): | ||||
|     # CSP Bottleneck with 3 convolutions | ||||
|     def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion | ||||
|         super(C3, self).__init__() | ||||
|         c_ = int(c2 * e)  # hidden channels | ||||
|         self.cv1 = Conv(c1, c_, 1, 1) | ||||
|         self.cv2 = Conv(c1, c_, 1, 1) | ||||
|         self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2) | ||||
|         self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) | ||||
|         # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.cv3(torch.cat( | ||||
|             ( | ||||
|                 self.m(self.cv1(x)),  | ||||
|                 self.cv2(x) | ||||
|             ) | ||||
|             , dim=1)) | ||||
|  | ||||
| class SPP(nn.Module): | ||||
|     # Spatial pyramid pooling layer used in YOLOv3-SPP | ||||
|     def __init__(self, c1, c2, k=(5, 9, 13)): | ||||
|         super(SPP, self).__init__() | ||||
|         c_ = c1 // 2  # hidden channels | ||||
|         self.cv1 = Conv(c1, c_, 1, 1) | ||||
|         self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) | ||||
|         self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         x = self.cv1(x) | ||||
|         return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) | ||||
|          | ||||
| class CSPDarknet(nn.Module): | ||||
|     def __init__(self, base_channels, base_depth, phi, pretrained): | ||||
|         super().__init__() | ||||
|         #-----------------------------------------------# | ||||
|         #   输入图片是640, 640, 3 | ||||
|         #   初始的基本通道base_channels是64 | ||||
|         #-----------------------------------------------# | ||||
|  | ||||
|         #-----------------------------------------------# | ||||
|         #   利用focus网络结构进行特征提取 | ||||
|         #   640, 640, 3 -> 320, 320, 12 -> 320, 320, 64 | ||||
|         #-----------------------------------------------# | ||||
|         self.stem       = Focus(3, base_channels, k=3) | ||||
|          | ||||
|         #-----------------------------------------------# | ||||
|         #   完成卷积之后,320, 320, 64 -> 160, 160, 128 | ||||
|         #   完成CSPlayer之后,160, 160, 128 -> 160, 160, 128 | ||||
|         #-----------------------------------------------# | ||||
|         self.dark2 = nn.Sequential( | ||||
|             # 320, 320, 64 -> 160, 160, 128 | ||||
|             Conv(base_channels, base_channels * 2, 3, 2), | ||||
|             # 160, 160, 128 -> 160, 160, 128 | ||||
|             C3(base_channels * 2, base_channels * 2, base_depth), | ||||
|         ) | ||||
|          | ||||
|         #-----------------------------------------------# | ||||
|         #   完成卷积之后,160, 160, 128 -> 80, 80, 256 | ||||
|         #   完成CSPlayer之后,80, 80, 256 -> 80, 80, 256 | ||||
|         #                   在这里引出有效特征层80, 80, 256 | ||||
|         #                   进行加强特征提取网络FPN的构建 | ||||
|         #-----------------------------------------------# | ||||
|         self.dark3 = nn.Sequential( | ||||
|             Conv(base_channels * 2, base_channels * 4, 3, 2), | ||||
|             C3(base_channels * 4, base_channels * 4, base_depth * 3), | ||||
|         ) | ||||
|  | ||||
|         #-----------------------------------------------# | ||||
|         #   完成卷积之后,80, 80, 256 -> 40, 40, 512 | ||||
|         #   完成CSPlayer之后,40, 40, 512 -> 40, 40, 512 | ||||
|         #                   在这里引出有效特征层40, 40, 512 | ||||
|         #                   进行加强特征提取网络FPN的构建 | ||||
|         #-----------------------------------------------# | ||||
|         self.dark4 = nn.Sequential( | ||||
|             Conv(base_channels * 4, base_channels * 8, 3, 2), | ||||
|             C3(base_channels * 8, base_channels * 8, base_depth * 3), | ||||
|         ) | ||||
|          | ||||
|         #-----------------------------------------------# | ||||
|         #   完成卷积之后,40, 40, 512 -> 20, 20, 1024 | ||||
|         #   完成SPP之后,20, 20, 1024 -> 20, 20, 1024 | ||||
|         #   完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024 | ||||
|         #-----------------------------------------------# | ||||
|         self.dark5 = nn.Sequential( | ||||
|             Conv(base_channels * 8, base_channels * 16, 3, 2), | ||||
|             SPP(base_channels * 16, base_channels * 16), | ||||
|             C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False), | ||||
|         ) | ||||
|         if pretrained: | ||||
|             url = { | ||||
|                 's' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth', | ||||
|                 'm' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth', | ||||
|                 'l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth', | ||||
|                 'x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth', | ||||
|             }[phi] | ||||
|             checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data") | ||||
|             self.load_state_dict(checkpoint, strict=False) | ||||
|             print("Load weights from ", url.split('/')[-1]) | ||||
|              | ||||
|     def forward(self, x): | ||||
|         x = self.stem(x) | ||||
|         x = self.dark2(x) | ||||
|         #-----------------------------------------------# | ||||
|         #   dark3的输出为80, 80, 256,是一个有效特征层 | ||||
|         #-----------------------------------------------# | ||||
|         x = self.dark3(x) | ||||
|         feat1 = x | ||||
|         #-----------------------------------------------# | ||||
|         #   dark4的输出为40, 40, 512,是一个有效特征层 | ||||
|         #-----------------------------------------------# | ||||
|         x = self.dark4(x) | ||||
|         feat2 = x | ||||
|         #-----------------------------------------------# | ||||
|         #   dark5的输出为20, 20, 1024,是一个有效特征层 | ||||
|         #-----------------------------------------------# | ||||
|         x = self.dark5(x) | ||||
|         feat3 = x | ||||
|         return feat1, feat2, feat3 | ||||
		Reference in New Issue
	
	Block a user