Initial
This commit is contained in:
149
utils/utils_fit.py
Normal file
149
utils/utils_fit.py
Normal file
@@ -0,0 +1,149 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.utils import get_lr
|
||||
|
||||
def fit_one_epoch(model_train, model, ema, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
|
||||
loss = 0
|
||||
val_loss = 0
|
||||
|
||||
if local_rank == 0:
|
||||
print('Start Train')
|
||||
pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
|
||||
model_train.train()
|
||||
for iteration, batch in enumerate(gen):
|
||||
if iteration >= epoch_step:
|
||||
break
|
||||
|
||||
images, targets, y_trues = batch[0], batch[1], batch[2]
|
||||
with torch.no_grad():
|
||||
if cuda:
|
||||
images = images.cuda(local_rank)
|
||||
targets = [ann.cuda(local_rank) for ann in targets]
|
||||
y_trues = [ann.cuda(local_rank) for ann in y_trues]
|
||||
#----------------------#
|
||||
# 清零梯度
|
||||
#----------------------#
|
||||
optimizer.zero_grad()
|
||||
if not fp16:
|
||||
#----------------------#
|
||||
# 前向传播
|
||||
#----------------------#
|
||||
outputs = model_train(images)
|
||||
|
||||
loss_value_all = 0
|
||||
#----------------------#
|
||||
# 计算损失
|
||||
#----------------------#
|
||||
for l in range(len(outputs)):
|
||||
loss_item = yolo_loss(l, outputs[l], targets, y_trues[l])
|
||||
loss_value_all += loss_item
|
||||
loss_value = loss_value_all
|
||||
|
||||
#----------------------#
|
||||
# 反向传播
|
||||
#----------------------#
|
||||
loss_value.backward()
|
||||
optimizer.step()
|
||||
else:
|
||||
from torch.cuda.amp import autocast
|
||||
with autocast():
|
||||
#----------------------#
|
||||
# 前向传播
|
||||
#----------------------#
|
||||
outputs = model_train(images)
|
||||
|
||||
loss_value_all = 0
|
||||
#----------------------#
|
||||
# 计算损失
|
||||
#----------------------#
|
||||
for l in range(len(outputs)):
|
||||
loss_item = yolo_loss(l, outputs[l], targets, y_trues[l])
|
||||
loss_value_all += loss_item
|
||||
loss_value = loss_value_all
|
||||
|
||||
#----------------------#
|
||||
# 反向传播
|
||||
#----------------------#
|
||||
scaler.scale(loss_value).backward()
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
if ema:
|
||||
ema.update(model_train)
|
||||
|
||||
loss += loss_value.item()
|
||||
|
||||
if local_rank == 0:
|
||||
pbar.set_postfix(**{'loss' : loss / (iteration + 1),
|
||||
'lr' : get_lr(optimizer)})
|
||||
pbar.update(1)
|
||||
|
||||
if local_rank == 0:
|
||||
pbar.close()
|
||||
print('Finish Train')
|
||||
print('Start Validation')
|
||||
pbar = tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
|
||||
|
||||
if ema:
|
||||
model_train_eval = ema.ema
|
||||
else:
|
||||
model_train_eval = model_train.eval()
|
||||
|
||||
for iteration, batch in enumerate(gen_val):
|
||||
if iteration >= epoch_step_val:
|
||||
break
|
||||
images, targets, y_trues = batch[0], batch[1], batch[2]
|
||||
with torch.no_grad():
|
||||
if cuda:
|
||||
images = images.cuda(local_rank)
|
||||
targets = [ann.cuda(local_rank) for ann in targets]
|
||||
y_trues = [ann.cuda(local_rank) for ann in y_trues]
|
||||
#----------------------#
|
||||
# 清零梯度
|
||||
#----------------------#
|
||||
optimizer.zero_grad()
|
||||
#----------------------#
|
||||
# 前向传播
|
||||
#----------------------#
|
||||
outputs = model_train_eval(images)
|
||||
|
||||
loss_value_all = 0
|
||||
#----------------------#
|
||||
# 计算损失
|
||||
#----------------------#
|
||||
for l in range(len(outputs)):
|
||||
loss_item = yolo_loss(l, outputs[l], targets, y_trues[l])
|
||||
loss_value_all += loss_item
|
||||
loss_value = loss_value_all
|
||||
|
||||
val_loss += loss_value.item()
|
||||
if local_rank == 0:
|
||||
pbar.set_postfix(**{'val_loss': val_loss / (iteration + 1)})
|
||||
pbar.update(1)
|
||||
|
||||
if local_rank == 0:
|
||||
pbar.close()
|
||||
print('Finish Validation')
|
||||
loss_history.append_loss(epoch + 1, loss / epoch_step, val_loss / epoch_step_val)
|
||||
eval_callback.on_epoch_end(epoch + 1, model_train_eval)
|
||||
print('Epoch:'+ str(epoch + 1) + '/' + str(Epoch))
|
||||
print('Total Loss: %.3f || Val Loss: %.3f ' % (loss / epoch_step, val_loss / epoch_step_val))
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 保存权值
|
||||
#-----------------------------------------------#
|
||||
if ema:
|
||||
save_state_dict = ema.ema.state_dict()
|
||||
else:
|
||||
save_state_dict = model.state_dict()
|
||||
|
||||
if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
|
||||
torch.save(save_state_dict, os.path.join(save_dir, "ep%03d-loss%.3f-val_loss%.3f.pth" % (epoch + 1, loss / epoch_step, val_loss / epoch_step_val)))
|
||||
|
||||
if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
|
||||
print('Save best model to best_epoch_weights.pth')
|
||||
torch.save(save_state_dict, os.path.join(save_dir, "best_epoch_weights.pth"))
|
||||
|
||||
torch.save(save_state_dict, os.path.join(save_dir, "last_epoch_weights.pth"))
|
||||
Reference in New Issue
Block a user