dev #1
2
.gitignore
vendored
2
.gitignore
vendored
@@ -2,5 +2,7 @@ database/chestXray8_512/*
|
||||
database/*
|
||||
logs/*
|
||||
|
||||
__pycache__
|
||||
*/__pycache__
|
||||
|
||||
!*.md
|
||||
138
get_map.py
Normal file
138
get_map.py
Normal file
@@ -0,0 +1,138 @@
|
||||
import os
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from utils.utils import get_classes
|
||||
from utils.utils_map import get_coco_map, get_map
|
||||
from yolo import YOLO
|
||||
|
||||
if __name__ == "__main__":
|
||||
'''
|
||||
Recall和Precision不像AP是一个面积的概念,因此在门限值(Confidence)不同时,网络的Recall和Precision值是不同的。
|
||||
默认情况下,本代码计算的Recall和Precision代表的是当门限值(Confidence)为0.5时,所对应的Recall和Precision值。
|
||||
|
||||
受到mAP计算原理的限制,网络在计算mAP时需要获得近乎所有的预测框,这样才可以计算不同门限条件下的Recall和Precision值
|
||||
因此,本代码获得的map_out/detection-results/里面的txt的框的数量一般会比直接predict多一些,目的是列出所有可能的预测框,
|
||||
'''
|
||||
#------------------------------------------------------------------------------------------------------------------#
|
||||
# map_mode用于指定该文件运行时计算的内容
|
||||
# map_mode为0代表整个map计算流程,包括获得预测结果、获得真实框、计算VOC_map。
|
||||
# map_mode为1代表仅仅获得预测结果。
|
||||
# map_mode为2代表仅仅获得真实框。
|
||||
# map_mode为3代表仅仅计算VOC_map。
|
||||
# map_mode为4代表利用COCO工具箱计算当前数据集的0.50:0.95map。需要获得预测结果、获得真实框后并安装pycocotools才行
|
||||
#-------------------------------------------------------------------------------------------------------------------#
|
||||
map_mode = 0
|
||||
#--------------------------------------------------------------------------------------#
|
||||
# 此处的classes_path用于指定需要测量VOC_map的类别
|
||||
# 一般情况下与训练和预测所用的classes_path一致即可
|
||||
#--------------------------------------------------------------------------------------#
|
||||
classes_path = 'model_data/voc_classes.txt'
|
||||
#--------------------------------------------------------------------------------------#
|
||||
# MINOVERLAP用于指定想要获得的mAP0.x,mAP0.x的意义是什么请同学们百度一下。
|
||||
# 比如计算mAP0.75,可以设定MINOVERLAP = 0.75。
|
||||
#
|
||||
# 当某一预测框与真实框重合度大于MINOVERLAP时,该预测框被认为是正样本,否则为负样本。
|
||||
# 因此MINOVERLAP的值越大,预测框要预测的越准确才能被认为是正样本,此时算出来的mAP值越低,
|
||||
#--------------------------------------------------------------------------------------#
|
||||
MINOVERLAP = 0.5
|
||||
#--------------------------------------------------------------------------------------#
|
||||
# 受到mAP计算原理的限制,网络在计算mAP时需要获得近乎所有的预测框,这样才可以计算mAP
|
||||
# 因此,confidence的值应当设置的尽量小进而获得全部可能的预测框。
|
||||
#
|
||||
# 该值一般不调整。因为计算mAP需要获得近乎所有的预测框,此处的confidence不能随便更改。
|
||||
# 想要获得不同门限值下的Recall和Precision值,请修改下方的score_threhold。
|
||||
#--------------------------------------------------------------------------------------#
|
||||
confidence = 0.001
|
||||
#--------------------------------------------------------------------------------------#
|
||||
# 预测时使用到的非极大抑制值的大小,越大表示非极大抑制越不严格。
|
||||
#
|
||||
# 该值一般不调整。
|
||||
#--------------------------------------------------------------------------------------#
|
||||
nms_iou = 0.5
|
||||
#---------------------------------------------------------------------------------------------------------------#
|
||||
# Recall和Precision不像AP是一个面积的概念,因此在门限值不同时,网络的Recall和Precision值是不同的。
|
||||
#
|
||||
# 默认情况下,本代码计算的Recall和Precision代表的是当门限值为0.5(此处定义为score_threhold)时所对应的Recall和Precision值。
|
||||
# 因为计算mAP需要获得近乎所有的预测框,上面定义的confidence不能随便更改。
|
||||
# 这里专门定义一个score_threhold用于代表门限值,进而在计算mAP时找到门限值对应的Recall和Precision值。
|
||||
#---------------------------------------------------------------------------------------------------------------#
|
||||
score_threhold = 0.5
|
||||
#-------------------------------------------------------#
|
||||
# map_vis用于指定是否开启VOC_map计算的可视化
|
||||
#-------------------------------------------------------#
|
||||
map_vis = False
|
||||
#-------------------------------------------------------#
|
||||
# 指向VOC数据集所在的文件夹
|
||||
# 默认指向根目录下的VOC数据集
|
||||
#-------------------------------------------------------#
|
||||
VOCdevkit_path = 'VOCdevkit'
|
||||
#-------------------------------------------------------#
|
||||
# 结果输出的文件夹,默认为map_out
|
||||
#-------------------------------------------------------#
|
||||
map_out_path = 'map_out'
|
||||
|
||||
image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Main/test.txt")).read().strip().split()
|
||||
|
||||
if not os.path.exists(map_out_path):
|
||||
os.makedirs(map_out_path)
|
||||
if not os.path.exists(os.path.join(map_out_path, 'ground-truth')):
|
||||
os.makedirs(os.path.join(map_out_path, 'ground-truth'))
|
||||
if not os.path.exists(os.path.join(map_out_path, 'detection-results')):
|
||||
os.makedirs(os.path.join(map_out_path, 'detection-results'))
|
||||
if not os.path.exists(os.path.join(map_out_path, 'images-optional')):
|
||||
os.makedirs(os.path.join(map_out_path, 'images-optional'))
|
||||
|
||||
class_names, _ = get_classes(classes_path)
|
||||
|
||||
if map_mode == 0 or map_mode == 1:
|
||||
print("Load model.")
|
||||
yolo = YOLO(confidence = confidence, nms_iou = nms_iou)
|
||||
print("Load model done.")
|
||||
|
||||
print("Get predict result.")
|
||||
for image_id in tqdm(image_ids):
|
||||
image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/"+image_id+".jpg")
|
||||
image = Image.open(image_path)
|
||||
if map_vis:
|
||||
image.save(os.path.join(map_out_path, "images-optional/" + image_id + ".jpg"))
|
||||
yolo.get_map_txt(image_id, image, class_names, map_out_path)
|
||||
print("Get predict result done.")
|
||||
|
||||
if map_mode == 0 or map_mode == 2:
|
||||
print("Get ground truth result.")
|
||||
for image_id in tqdm(image_ids):
|
||||
with open(os.path.join(map_out_path, "ground-truth/"+image_id+".txt"), "w") as new_f:
|
||||
root = ET.parse(os.path.join(VOCdevkit_path, "VOC2007/Annotations/"+image_id+".xml")).getroot()
|
||||
for obj in root.findall('object'):
|
||||
difficult_flag = False
|
||||
if obj.find('difficult')!=None:
|
||||
difficult = obj.find('difficult').text
|
||||
if int(difficult)==1:
|
||||
difficult_flag = True
|
||||
obj_name = obj.find('name').text
|
||||
if obj_name not in class_names:
|
||||
continue
|
||||
bndbox = obj.find('bndbox')
|
||||
left = bndbox.find('xmin').text
|
||||
top = bndbox.find('ymin').text
|
||||
right = bndbox.find('xmax').text
|
||||
bottom = bndbox.find('ymax').text
|
||||
|
||||
if difficult_flag:
|
||||
new_f.write("%s %s %s %s %s difficult\n" % (obj_name, left, top, right, bottom))
|
||||
else:
|
||||
new_f.write("%s %s %s %s %s\n" % (obj_name, left, top, right, bottom))
|
||||
print("Get ground truth result done.")
|
||||
|
||||
if map_mode == 0 or map_mode == 3:
|
||||
print("Get map.")
|
||||
get_map(MINOVERLAP, True, score_threhold = score_threhold, path = map_out_path)
|
||||
print("Get map done.")
|
||||
|
||||
if map_mode == 4:
|
||||
print("Get map.")
|
||||
get_coco_map(class_names = class_names, path = map_out_path)
|
||||
print("Get map done.")
|
||||
177
nets/CSPdarknet.py
Normal file
177
nets/CSPdarknet.py
Normal file
@@ -0,0 +1,177 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class SiLU(nn.Module):
|
||||
@staticmethod
|
||||
def forward(x):
|
||||
return x * torch.sigmoid(x)
|
||||
|
||||
def autopad(k, p=None):
|
||||
if p is None:
|
||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
|
||||
return p
|
||||
|
||||
class Focus(nn.Module):
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||
super(Focus, self).__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||||
|
||||
def forward(self, x):
|
||||
# 320, 320, 12 => 320, 320, 64
|
||||
return self.conv(
|
||||
# 640, 640, 3 => 320, 320, 12
|
||||
torch.cat(
|
||||
[
|
||||
x[..., ::2, ::2],
|
||||
x[..., 1::2, ::2],
|
||||
x[..., ::2, 1::2],
|
||||
x[..., 1::2, 1::2]
|
||||
], 1
|
||||
)
|
||||
)
|
||||
|
||||
class Conv(nn.Module):
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
|
||||
super(Conv, self).__init__()
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c2, eps=0.001, momentum=0.03)
|
||||
self.act = SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuseforward(self, x):
|
||||
return self.act(self.conv(x))
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
# Standard bottleneck
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||
super(Bottleneck, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
class C3(nn.Module):
|
||||
# CSP Bottleneck with 3 convolutions
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||
super(C3, self).__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
||||
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
||||
|
||||
def forward(self, x):
|
||||
return self.cv3(torch.cat(
|
||||
(
|
||||
self.m(self.cv1(x)),
|
||||
self.cv2(x)
|
||||
)
|
||||
, dim=1))
|
||||
|
||||
class SPP(nn.Module):
|
||||
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||
super(SPP, self).__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.cv1(x)
|
||||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||
|
||||
class CSPDarknet(nn.Module):
|
||||
def __init__(self, base_channels, base_depth, phi, pretrained):
|
||||
super().__init__()
|
||||
#-----------------------------------------------#
|
||||
# 输入图片是640, 640, 3
|
||||
# 初始的基本通道base_channels是64
|
||||
#-----------------------------------------------#
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 利用focus网络结构进行特征提取
|
||||
# 640, 640, 3 -> 320, 320, 12 -> 320, 320, 64
|
||||
#-----------------------------------------------#
|
||||
self.stem = Focus(3, base_channels, k=3)
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 完成卷积之后,320, 320, 64 -> 160, 160, 128
|
||||
# 完成CSPlayer之后,160, 160, 128 -> 160, 160, 128
|
||||
#-----------------------------------------------#
|
||||
self.dark2 = nn.Sequential(
|
||||
# 320, 320, 64 -> 160, 160, 128
|
||||
Conv(base_channels, base_channels * 2, 3, 2),
|
||||
# 160, 160, 128 -> 160, 160, 128
|
||||
C3(base_channels * 2, base_channels * 2, base_depth),
|
||||
)
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 完成卷积之后,160, 160, 128 -> 80, 80, 256
|
||||
# 完成CSPlayer之后,80, 80, 256 -> 80, 80, 256
|
||||
# 在这里引出有效特征层80, 80, 256
|
||||
# 进行加强特征提取网络FPN的构建
|
||||
#-----------------------------------------------#
|
||||
self.dark3 = nn.Sequential(
|
||||
Conv(base_channels * 2, base_channels * 4, 3, 2),
|
||||
C3(base_channels * 4, base_channels * 4, base_depth * 3),
|
||||
)
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 完成卷积之后,80, 80, 256 -> 40, 40, 512
|
||||
# 完成CSPlayer之后,40, 40, 512 -> 40, 40, 512
|
||||
# 在这里引出有效特征层40, 40, 512
|
||||
# 进行加强特征提取网络FPN的构建
|
||||
#-----------------------------------------------#
|
||||
self.dark4 = nn.Sequential(
|
||||
Conv(base_channels * 4, base_channels * 8, 3, 2),
|
||||
C3(base_channels * 8, base_channels * 8, base_depth * 3),
|
||||
)
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 完成卷积之后,40, 40, 512 -> 20, 20, 1024
|
||||
# 完成SPP之后,20, 20, 1024 -> 20, 20, 1024
|
||||
# 完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024
|
||||
#-----------------------------------------------#
|
||||
self.dark5 = nn.Sequential(
|
||||
Conv(base_channels * 8, base_channels * 16, 3, 2),
|
||||
SPP(base_channels * 16, base_channels * 16),
|
||||
C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False),
|
||||
)
|
||||
if pretrained:
|
||||
url = {
|
||||
's' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth',
|
||||
'm' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth',
|
||||
'l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth',
|
||||
'x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth',
|
||||
}[phi]
|
||||
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
|
||||
self.load_state_dict(checkpoint, strict=False)
|
||||
print("Load weights from ", url.split('/')[-1])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.stem(x)
|
||||
x = self.dark2(x)
|
||||
#-----------------------------------------------#
|
||||
# dark3的输出为80, 80, 256,是一个有效特征层
|
||||
#-----------------------------------------------#
|
||||
x = self.dark3(x)
|
||||
feat1 = x
|
||||
#-----------------------------------------------#
|
||||
# dark4的输出为40, 40, 512,是一个有效特征层
|
||||
#-----------------------------------------------#
|
||||
x = self.dark4(x)
|
||||
feat2 = x
|
||||
#-----------------------------------------------#
|
||||
# dark5的输出为20, 20, 1024,是一个有效特征层
|
||||
#-----------------------------------------------#
|
||||
x = self.dark5(x)
|
||||
feat3 = x
|
||||
return feat1, feat2, feat3
|
||||
249
nets/ConvNext.py
Normal file
249
nets/ConvNext.py
Normal file
@@ -0,0 +1,249 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
def __init__(self, drop_prob=None, scale_by_keep=True):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.scale_by_keep = scale_by_keep
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
||||
|
||||
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
||||
def norm_cdf(x):
|
||||
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
||||
|
||||
with torch.no_grad():
|
||||
l = norm_cdf((a - mean) / std)
|
||||
u = norm_cdf((b - mean) / std)
|
||||
|
||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||
tensor.erfinv_()
|
||||
|
||||
tensor.mul_(std * math.sqrt(2.))
|
||||
tensor.add_(mean)
|
||||
|
||||
tensor.clamp_(min=a, max=b)
|
||||
return tensor
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
|
||||
#--------------------------------------#
|
||||
# Gelu激活函数的实现
|
||||
# 利用近似的数学公式
|
||||
#--------------------------------------#
|
||||
class GELU(nn.Module):
|
||||
def __init__(self):
|
||||
super(GELU, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x,3))))
|
||||
|
||||
#---------------------------------------------------------------------------------#
|
||||
# LayerNorm 支持两种形式channels_last (default) or channels_first.
|
||||
# channels_last 对应具有形状的输入(batch_size, height, width, channels)
|
||||
# channels_first 对应具有形状的输入(batch_size, channels, height, width).
|
||||
#---------------------------------------------------------------------------------#
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
||||
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
||||
self.eps = eps
|
||||
self.data_format = data_format
|
||||
if self.data_format not in ["channels_last", "channels_first"]:
|
||||
raise NotImplementedError
|
||||
self.normalized_shape = (normalized_shape, )
|
||||
|
||||
def forward(self, x):
|
||||
if self.data_format == "channels_last":
|
||||
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
||||
elif self.data_format == "channels_first":
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
return x
|
||||
|
||||
#--------------------------------------------------------------------------------------------------------------#
|
||||
# ConvNeXt Block有两种等效的实现:
|
||||
# (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
||||
# (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
||||
# 代码中使用(2),因为这个在PyTorch中稍微快一点
|
||||
#--------------------------------------------------------------------------------------------------------------#
|
||||
class Block(nn.Module):
|
||||
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
|
||||
super().__init__()
|
||||
#--------------------------#
|
||||
# 7x7的逐层卷积
|
||||
#--------------------------#
|
||||
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
|
||||
self.norm = LayerNorm(dim, eps=1e-6)
|
||||
#--------------------------#
|
||||
# 利用全连接层代替1x1卷积
|
||||
#--------------------------#
|
||||
self.pwconv1 = nn.Linear(dim, 4 * dim)
|
||||
self.act = GELU()
|
||||
#--------------------------#
|
||||
# 利用全连接层代替1x1卷积
|
||||
#--------------------------#
|
||||
self.pwconv2 = nn.Linear(4 * dim, dim)
|
||||
#--------------------------#
|
||||
# 加入缩放系数
|
||||
#--------------------------#
|
||||
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None
|
||||
#--------------------------#
|
||||
# 加入Drop_path正则化
|
||||
#--------------------------#
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
input = x
|
||||
#--------------------------#
|
||||
# 7x7的逐层卷积
|
||||
#--------------------------#
|
||||
x = self.dwconv(x)
|
||||
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
||||
x = self.norm(x)
|
||||
#--------------------------#
|
||||
# 利用全连接层代替1x1卷积
|
||||
#--------------------------#
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
#--------------------------#
|
||||
# 利用全连接层代替1x1卷积
|
||||
#--------------------------#
|
||||
x = self.pwconv2(x)
|
||||
#--------------------------#
|
||||
# 加入缩放系数
|
||||
#--------------------------#
|
||||
if self.gamma is not None:
|
||||
x = self.gamma * x
|
||||
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
||||
#--------------------------#
|
||||
# 加入Drop_path正则化
|
||||
#--------------------------#
|
||||
x = input + self.drop_path(x)
|
||||
return x
|
||||
|
||||
#-----------------------------------------------------#
|
||||
# ConvNeXt
|
||||
# A PyTorch impl of : `A ConvNet for the 2020s`
|
||||
# https://arxiv.org/pdf/2201.03545.pdf
|
||||
#-----------------------------------------------------#
|
||||
class ConvNeXt(nn.Module):
|
||||
def __init__(
|
||||
self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768],
|
||||
drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1., **kwargs
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.downsample_layers = nn.ModuleList()
|
||||
#--------------------------------------------------#
|
||||
# bs, 3, 224, 224 -> bs, 96, 56, 56
|
||||
#--------------------------------------------------#
|
||||
stem = nn.Sequential(
|
||||
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
|
||||
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
|
||||
)
|
||||
self.downsample_layers.append(stem)
|
||||
|
||||
#--------------------------------------------------#
|
||||
# 定义三次下采样的过程
|
||||
# 利用步长为2x2,卷积核大小为2x2的卷积进行下采样
|
||||
#--------------------------------------------------#
|
||||
for i in range(3):
|
||||
downsample_layer = nn.Sequential(
|
||||
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
|
||||
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
|
||||
)
|
||||
self.downsample_layers.append(downsample_layer)
|
||||
|
||||
#--------------------------------------------------#
|
||||
# 根据深度的不同,定义不同的drop率
|
||||
#--------------------------------------------------#
|
||||
self.stages = nn.ModuleList()
|
||||
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
||||
cur = 0
|
||||
#--------------------------------------------------#
|
||||
# 整个ConvNeXt除了Stem外,存在四个Stage
|
||||
# 每个Stage里面是多个ConvNeXt Block的堆叠。
|
||||
#--------------------------------------------------#
|
||||
for i in range(4):
|
||||
stage = nn.Sequential(
|
||||
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
|
||||
)
|
||||
self.stages.append(stage)
|
||||
cur += depths[i]
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, (nn.Conv2d, nn.Linear)):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
outs = []
|
||||
for i in range(4):
|
||||
x = self.downsample_layers[i](x)
|
||||
x = self.stages[i](x)
|
||||
if i != 0:
|
||||
outs.append(x)
|
||||
return outs
|
||||
|
||||
model_urls = {
|
||||
"convnext_tiny_1k" : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/convnext_tiny_1k_224_ema_no_jit.pth",
|
||||
"convnext_small_1k" : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/convnext_small_1k_224_ema_no_jit.pth",
|
||||
}
|
||||
|
||||
#------------------------------------------------------#
|
||||
# Tiny约等于Cspdarknet-L的尺寸
|
||||
#------------------------------------------------------#
|
||||
def ConvNeXt_Tiny(pretrained=False, **kwargs):
|
||||
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
|
||||
if pretrained:
|
||||
url = model_urls['convnext_tiny_1k']
|
||||
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
print("Load weights from ", url.split('/')[-1])
|
||||
return model
|
||||
|
||||
#------------------------------------------------------#
|
||||
# Tiny约等于Cspdarknet-X的尺寸
|
||||
#------------------------------------------------------#
|
||||
def ConvNeXt_Small(pretrained=False, **kwargs):
|
||||
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
|
||||
if pretrained:
|
||||
url = model_urls['convnext_small_1k']
|
||||
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
print("Load weights from ", url.split('/')[-1])
|
||||
return model
|
||||
638
nets/Swin_transformer.py
Normal file
638
nets/Swin_transformer.py
Normal file
@@ -0,0 +1,638 @@
|
||||
# --------------------------------------------------------
|
||||
# Swin Transformer
|
||||
# Copyright (c) 2021 Microsoft
|
||||
# Licensed under The MIT License [see LICENSE for details]
|
||||
# Written by Ze Liu
|
||||
# --------------------------------------------------------
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
|
||||
|
||||
def _make_divisible(v, divisor, min_value=None):
|
||||
if min_value is None:
|
||||
min_value = divisor
|
||||
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
||||
if new_v < 0.9 * v:
|
||||
new_v += divisor
|
||||
return new_v
|
||||
|
||||
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
||||
def norm_cdf(x):
|
||||
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
||||
|
||||
with torch.no_grad():
|
||||
l = norm_cdf((a - mean) / std)
|
||||
u = norm_cdf((b - mean) / std)
|
||||
|
||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||
tensor.erfinv_()
|
||||
|
||||
tensor.mul_(std * math.sqrt(2.))
|
||||
tensor.add_(mean)
|
||||
|
||||
tensor.clamp_(min=a, max=b)
|
||||
return tensor
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
|
||||
#--------------------------------------#
|
||||
# Gelu激活函数的实现
|
||||
# 利用近似的数学公式
|
||||
#--------------------------------------#
|
||||
class GELU(nn.Module):
|
||||
def __init__(self):
|
||||
super(GELU, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x,3))))
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 对输入进来的图片进行高和宽的压缩
|
||||
# 并且进行通道的扩张。
|
||||
#-------------------------------------------------------#
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(self, img_size=[224, 224], patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
||||
super().__init__()
|
||||
# [224, 224]
|
||||
self.img_size = img_size
|
||||
# [4, 4]
|
||||
self.patch_size = [patch_size, patch_size]
|
||||
# [56, 56]
|
||||
self.patches_resolution = [self.img_size[0] // self.patch_size[0], self.img_size[1] // self.patch_size[1]]
|
||||
|
||||
# 3136
|
||||
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
|
||||
# 3
|
||||
self.in_chans = in_chans
|
||||
# 96
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# bs, 224, 224, 3 -> bs, 56, 56, 96
|
||||
#-------------------------------------------------------#
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
if norm_layer is not None:
|
||||
self.norm = norm_layer(embed_dim)
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
# FIXME look at relaxing size constraints
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]} * {self.img_size[1]})."
|
||||
#-------------------------------------------------------#
|
||||
# bs, 224, 224, 3 -> bs, 56, 56, 96 -> bs, 3136, 96
|
||||
#-------------------------------------------------------#
|
||||
x = self.proj(x).flatten(2).transpose(1, 2)
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
def window_partition(x, window_size):
|
||||
B, H, W, C = x.shape
|
||||
#------------------------------------------------------------------#
|
||||
# bs, 56, 56, 96 -> bs, 8, 7, 8, 7, 96 -> bs * 64, 7, 7, 96
|
||||
#------------------------------------------------------------------#
|
||||
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
#------------------------------------------------------------------#
|
||||
# bs * 64, 7, 7, 96 -> bs, 8, 8, 7, 7, 96 -> bs, 56, 56, 96
|
||||
#------------------------------------------------------------------#
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
||||
return x
|
||||
|
||||
|
||||
class WindowAttention(nn.Module):
|
||||
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.window_size = window_size # Wh, Ww
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
#--------------------------------------------------------------------------#
|
||||
# 相对坐标矩阵,用于表示每个窗口内,其它点相对于自己的坐标
|
||||
# 由于相对坐标取值范围为-6 ~ +6。中间共13个值,因此需要13 * 13
|
||||
# 13 * 13, num_heads
|
||||
#--------------------------------------------------------------------------#
|
||||
self.relative_position_bias_table = nn.Parameter(
|
||||
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
|
||||
)
|
||||
|
||||
#--------------------------------------------------------------------------#
|
||||
# 该部分用于获取7x7的矩阵内部,其它特征点相对于自身相对坐标
|
||||
#--------------------------------------------------------------------------#
|
||||
coords_h = torch.arange(self.window_size[0])
|
||||
coords_w = torch.arange(self.window_size[1])
|
||||
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
self.register_buffer("relative_position_index", relative_position_index)
|
||||
|
||||
#--------------------------------------------------------------------------#
|
||||
# 乘积获得q、k、v,用于计算多头注意力机制
|
||||
#--------------------------------------------------------------------------#
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
trunc_normal_(self.relative_position_bias_table, std=.02)
|
||||
self.softmax = nn.Softmax(dim=-1)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
B_, N, C = x.shape
|
||||
#--------------------------------------------------------------------------#
|
||||
# bs * 64, 49, 96 -> bs * 64, 49, 96 * 3 ->
|
||||
# bs * 64, 49, 3, num_heads, 32 -> 3, bs * 64, num_head, 49, 32
|
||||
#--------------------------------------------------------------------------#
|
||||
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
||||
#--------------------------------------------------------------------------#
|
||||
# bs * 64, num_head, 49, 32
|
||||
#--------------------------------------------------------------------------#
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
|
||||
#--------------------------------------------------------------------------#
|
||||
# bs * 64, num_head, 49, 49
|
||||
#--------------------------------------------------------------------------#
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
#--------------------------------------------------------------------------#
|
||||
# 这一步是根据已经求得的注意力,加上相对坐标的偏执量
|
||||
# 形成最后的注意力
|
||||
#--------------------------------------------------------------------------#
|
||||
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
||||
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
#--------------------------------------------------------------------------#
|
||||
# 加上mask,保证分区。
|
||||
# bs * 64, num_head, 49, 49
|
||||
#--------------------------------------------------------------------------#
|
||||
if mask is not None:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.view(-1, self.num_heads, N, N)
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
#---------------------------------------------------------------------------------------#
|
||||
# bs * 64, num_head, 49, 49 @ bs * 64, num_head, 49, 32 -> bs * 64, num_head, 49, 32
|
||||
#
|
||||
# bs * 64, num_head, 49, 32 -> bs * 64, 49, 96
|
||||
#---------------------------------------------------------------------------------------#
|
||||
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
def __init__(self, drop_prob=None, scale_by_keep=True):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
self.scale_by_keep = scale_by_keep
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
|
||||
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 两次全连接
|
||||
#-------------------------------------------------------#
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 每个阶段重复的基础模块
|
||||
# 在这其中会使用WindowAttention进行特征提取
|
||||
#-------------------------------------------------------#
|
||||
class SwinTransformerBlock(nn.Module):
|
||||
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
||||
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
||||
act_layer=GELU, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.num_heads = num_heads
|
||||
self.window_size = window_size
|
||||
self.shift_size = shift_size
|
||||
|
||||
self.mlp_ratio = mlp_ratio
|
||||
if min(self.input_resolution) <= self.window_size:
|
||||
self.shift_size = 0
|
||||
self.window_size = min(self.input_resolution)
|
||||
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = WindowAttention(
|
||||
dim,
|
||||
window_size = [self.window_size, self.window_size],
|
||||
num_heads = num_heads,
|
||||
qkv_bias = qkv_bias,
|
||||
qk_scale = qk_scale,
|
||||
attn_drop = attn_drop,
|
||||
proj_drop = drop
|
||||
)
|
||||
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
||||
|
||||
if self.shift_size > 0:
|
||||
#----------------------------------------------------------------#
|
||||
# 由于进行特征提取时,会对输入的特征层进行的平移
|
||||
# 如:
|
||||
# [ [
|
||||
# [1, 2, 3], [5, 6, 4],
|
||||
# [4, 5, 6], --> [8, 9, 7],
|
||||
# [7, 8, 9], [1, 2, 3],
|
||||
# ] ]
|
||||
# 这一步的作用就是使得平移后的区域块只计算自己部分的注意力机制
|
||||
#----------------------------------------------------------------#
|
||||
H, W = self.input_resolution
|
||||
_H, _W = _make_divisible(H, self.window_size), _make_divisible(W, self.window_size),
|
||||
img_mask = torch.zeros((1, _H, _W, 1)) # 1 H W 1
|
||||
h_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
w_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, h, w, :] = cnt
|
||||
cnt += 1
|
||||
|
||||
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
||||
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
||||
self.attn_mask = attn_mask.cpu().numpy()
|
||||
else:
|
||||
self.attn_mask = None
|
||||
|
||||
def forward(self, x):
|
||||
H, W = self.input_resolution
|
||||
B, L, C = x.shape
|
||||
assert L == H * W, "input feature has wrong size"
|
||||
#-----------------------------------------------#
|
||||
# bs, 3136, 96 -> bs, 56, 56, 96
|
||||
#-----------------------------------------------#
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
x = x.view(B, H, W, C)
|
||||
|
||||
_H, _W = _make_divisible(H, self.window_size), _make_divisible(W, self.window_size),
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = F.interpolate(x, [_H, _W], mode='bicubic', align_corners=False).permute(0, 2, 3, 1)
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 进行特征层的平移
|
||||
#-----------------------------------------------#
|
||||
if self.shift_size > 0:
|
||||
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
||||
else:
|
||||
shifted_x = x
|
||||
#------------------------------------------------------------------------------------------#
|
||||
# bs, 56, 56, 96 -> bs * 64, 7, 7, 96 -> bs * 64, 49, 96
|
||||
#------------------------------------------------------------------------------------------#
|
||||
x_windows = window_partition(shifted_x, self.window_size) # num_windows * B, window_size, window_size, C
|
||||
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
||||
|
||||
#-----------------------------------------------#
|
||||
# bs * 64, 49, 97 -> bs * 64, 49, 97
|
||||
#-----------------------------------------------#
|
||||
if type(self.attn_mask) != type(None):
|
||||
attn_mask = torch.tensor(self.attn_mask).cuda() if x.is_cuda else torch.tensor(self.attn_mask)
|
||||
else:
|
||||
attn_mask = None
|
||||
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
||||
#-----------------------------------------------#
|
||||
# bs * 64, 49, 97 -> bs, 56, 56, 96
|
||||
#-----------------------------------------------#
|
||||
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
||||
shifted_x = window_reverse(attn_windows, self.window_size, _H, _W) # B H' W' C
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 将特征层平移回来
|
||||
#-----------------------------------------------#
|
||||
if self.shift_size > 0:
|
||||
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
||||
else:
|
||||
x = shifted_x
|
||||
|
||||
x = x.permute(0, 3, 1, 2)
|
||||
x = F.interpolate(x, [H, W], mode='bicubic', align_corners=False).permute(0, 2, 3, 1)
|
||||
#-----------------------------------------------#
|
||||
# bs, 3136, 96
|
||||
#-----------------------------------------------#
|
||||
x = x.view(B, H * W, C)
|
||||
#-----------------------------------------------#
|
||||
# FFN
|
||||
# bs, 3136, 96
|
||||
#-----------------------------------------------#
|
||||
x = shortcut + self.drop_path(x)
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
||||
|
||||
return x
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 对输入进来的特征层进行高和宽的压缩
|
||||
# 进行跨特征点的特征提取,提取完成后进行堆叠。
|
||||
#-------------------------------------------------------#
|
||||
class PatchMerging(nn.Module):
|
||||
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.input_resolution = input_resolution
|
||||
self.dim = dim
|
||||
|
||||
self.norm = norm_layer(4 * dim)
|
||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
H, W = self.input_resolution
|
||||
B, L, C = x.shape
|
||||
assert L == H * W, "input feature has wrong size"
|
||||
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# bs, 3136, 96 -> bs, 56, 56, 96
|
||||
#-------------------------------------------------------#
|
||||
x = x.view(B, H, W, C)
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# x0 ~ x3 bs, 56, 56, 96 -> bs, 28, 28, 96
|
||||
#-------------------------------------------------------#
|
||||
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
||||
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
||||
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
||||
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 4 X bs, 28, 28, 96 -> bs, 28, 28, 384
|
||||
#-------------------------------------------------------#
|
||||
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
||||
#-------------------------------------------------------#
|
||||
# bs, 28, 28, 384 -> bs, 784, 384
|
||||
#-------------------------------------------------------#
|
||||
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# bs, 784, 384 -> bs, 784, 192
|
||||
#-------------------------------------------------------#
|
||||
x = self.norm(x)
|
||||
x = self.reduction(x)
|
||||
return x
|
||||
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# Swin-Transformer的基础模块。
|
||||
# 使用窗口多头注意力机制进行特征提取。
|
||||
# 使用PatchMerging进行高和宽的压缩。
|
||||
#-------------------------------------------------------#
|
||||
class BasicLayer(nn.Module):
|
||||
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
||||
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
||||
super().__init__()
|
||||
#-------------------------------------------------------#
|
||||
# 四个阶段对应不同的dim
|
||||
# [96, 192, 384, 768]
|
||||
#-------------------------------------------------------#
|
||||
self.dim = dim
|
||||
#-------------------------------------------------------#
|
||||
# 四个阶段对应不同的输入分辨率
|
||||
# [[56, 56], [28, 28], [14, 14], [7, 7]]
|
||||
#-------------------------------------------------------#
|
||||
self.input_resolution = input_resolution
|
||||
#-------------------------------------------------------#
|
||||
# 四个阶段对应不同的多头注意力机制重复次数
|
||||
# [2, 2, 6, 2]
|
||||
#-------------------------------------------------------#
|
||||
self.depth = depth
|
||||
self.use_checkpoint = use_checkpoint
|
||||
|
||||
#-------------------------------------------------------#
|
||||
# 根据depth的次数利用窗口多头注意力机制进行特征提取。
|
||||
#-------------------------------------------------------#
|
||||
self.blocks = nn.ModuleList(
|
||||
[
|
||||
SwinTransformerBlock(
|
||||
dim = dim,
|
||||
input_resolution = input_resolution,
|
||||
num_heads = num_heads,
|
||||
window_size = window_size,
|
||||
shift_size = 0 if (i % 2 == 0) else window_size // 2,
|
||||
mlp_ratio = mlp_ratio,
|
||||
qkv_bias = qkv_bias,
|
||||
qk_scale = qk_scale,
|
||||
drop = drop,
|
||||
attn_drop = attn_drop,
|
||||
drop_path = drop_path[i] if isinstance(drop_path, list) else drop_path,
|
||||
norm_layer = norm_layer
|
||||
)
|
||||
for i in range(depth)
|
||||
]
|
||||
)
|
||||
|
||||
if downsample is not None:
|
||||
#-------------------------------------------------------#
|
||||
# 判断是否要进行下采样,即:高宽压缩
|
||||
#-------------------------------------------------------#
|
||||
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
def forward(self, x):
|
||||
for blk in self.blocks:
|
||||
if self.use_checkpoint:
|
||||
x_ = checkpoint.checkpoint(blk, x)
|
||||
else:
|
||||
x_ = blk(x)
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x_)
|
||||
else:
|
||||
x = x_
|
||||
return x_, x
|
||||
|
||||
class SwinTransformer(nn.Module):
|
||||
def __init__(self, img_size=[640, 640], patch_size=4, in_chans=3, num_classes=1000,
|
||||
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
|
||||
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
||||
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
||||
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
||||
use_checkpoint=False, **kwargs):
|
||||
super().__init__()
|
||||
self.num_classes = num_classes
|
||||
self.num_layers = len(depths)
|
||||
self.embed_dim = embed_dim
|
||||
self.ape = ape
|
||||
self.patch_norm = patch_norm
|
||||
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
#--------------------------------------------------#
|
||||
# bs, 224, 224, 3 -> bs, 3136, 96
|
||||
#--------------------------------------------------#
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size = img_size,
|
||||
patch_size = patch_size,
|
||||
in_chans = in_chans,
|
||||
embed_dim = embed_dim,
|
||||
norm_layer = norm_layer if self.patch_norm else None
|
||||
)
|
||||
|
||||
#--------------------------------------------------#
|
||||
# PatchEmbed之后的图像序列长度 3136
|
||||
# PatchEmbed之后的图像对应的分辨率 [56, 56]
|
||||
#--------------------------------------------------#
|
||||
num_patches = self.patch_embed.num_patches
|
||||
patches_resolution = self.patch_embed.patches_resolution
|
||||
self.patches_resolution = patches_resolution
|
||||
|
||||
if self.ape:
|
||||
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
||||
trunc_normal_(self.absolute_pos_embed, std=.02)
|
||||
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
#--------------------------------------------------#
|
||||
# stochastic depth
|
||||
#--------------------------------------------------#
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
||||
|
||||
#---------------------------------------------------------------#
|
||||
# 构建swin-transform的每个阶段
|
||||
# bs, 3136, 96 -> bs, 784, 192 -> bs, 196, 384 -> bs, 49, 768
|
||||
#---------------------------------------------------------------#
|
||||
self.layers = nn.ModuleList()
|
||||
for i_layer in range(self.num_layers):
|
||||
layer = BasicLayer(
|
||||
dim = int(embed_dim * 2 ** i_layer),
|
||||
input_resolution = (patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)),
|
||||
depth = depths[i_layer],
|
||||
num_heads = num_heads[i_layer],
|
||||
window_size = window_size,
|
||||
mlp_ratio = self.mlp_ratio,
|
||||
qkv_bias = qkv_bias,
|
||||
qk_scale = qk_scale,
|
||||
drop = drop_rate,
|
||||
attn_drop = attn_drop_rate,
|
||||
drop_path = dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
||||
norm_layer = norm_layer,
|
||||
downsample = PatchMerging if (i_layer < self.num_layers - 1) else None,
|
||||
use_checkpoint = use_checkpoint
|
||||
)
|
||||
self.layers.append(layer)
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'absolute_pos_embed'}
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay_keywords(self):
|
||||
return {'relative_position_bias_table'}
|
||||
|
||||
def forward(self, x):
|
||||
x = self.patch_embed(x)
|
||||
if self.ape:
|
||||
x = x + self.absolute_pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
inverval_outs = []
|
||||
for i, layer in enumerate(self.layers):
|
||||
x_, x = layer(x)
|
||||
if i != 0:
|
||||
inverval_outs.append(x_)
|
||||
|
||||
outs = []
|
||||
for i, layer in enumerate(inverval_outs):
|
||||
H, W = (self.patches_resolution[0] // (2 ** (i + 1)), self.patches_resolution[1] // (2 ** (i + 1)))
|
||||
B, L, C = layer.shape
|
||||
layer = layer.view([B, H, W, C]).permute([0, 3, 1, 2])
|
||||
outs.append(layer)
|
||||
|
||||
return outs
|
||||
|
||||
def Swin_transformer_Tiny(pretrained = False, input_shape = [640, 640], **kwargs):
|
||||
model = SwinTransformer(input_shape, depths=[2, 2, 6, 2], **kwargs)
|
||||
if pretrained:
|
||||
url = "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/swin_tiny_patch4_window7.pth"
|
||||
checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
|
||||
model.load_state_dict(checkpoint, strict=False)
|
||||
print("Load weights from ", url.split('/')[-1])
|
||||
|
||||
return model
|
||||
1
nets/__init__.py
Normal file
1
nets/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
#
|
||||
132
nets/yolo.py
Normal file
132
nets/yolo.py
Normal file
@@ -0,0 +1,132 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from nets.ConvNext import ConvNeXt_Small, ConvNeXt_Tiny
|
||||
from nets.CSPdarknet import C3, Conv, CSPDarknet
|
||||
from nets.Swin_transformer import Swin_transformer_Tiny
|
||||
|
||||
|
||||
#---------------------------------------------------#
|
||||
# yolo_body
|
||||
#---------------------------------------------------#
|
||||
class YoloBody(nn.Module):
|
||||
def __init__(self, anchors_mask, num_classes, phi, backbone='cspdarknet', pretrained=False, input_shape=[640, 640]):
|
||||
super(YoloBody, self).__init__()
|
||||
depth_dict = {'s' : 0.33, 'm' : 0.67, 'l' : 1.00, 'x' : 1.33,}
|
||||
width_dict = {'s' : 0.50, 'm' : 0.75, 'l' : 1.00, 'x' : 1.25,}
|
||||
dep_mul, wid_mul = depth_dict[phi], width_dict[phi]
|
||||
|
||||
base_channels = int(wid_mul * 64) # 64
|
||||
base_depth = max(round(dep_mul * 3), 1) # 3
|
||||
#-----------------------------------------------#
|
||||
# 输入图片是640, 640, 3
|
||||
# 初始的基本通道是64
|
||||
#-----------------------------------------------#
|
||||
self.backbone_name = backbone
|
||||
if backbone == "cspdarknet":
|
||||
#---------------------------------------------------#
|
||||
# 生成CSPdarknet53的主干模型
|
||||
# 获得三个有效特征层,他们的shape分别是:
|
||||
# 80,80,256
|
||||
# 40,40,512
|
||||
# 20,20,1024
|
||||
#---------------------------------------------------#
|
||||
self.backbone = CSPDarknet(base_channels, base_depth, phi, pretrained)
|
||||
else:
|
||||
#---------------------------------------------------#
|
||||
# 如果输入不为cspdarknet,则调整通道数
|
||||
# 使其符合YoloV5的格式
|
||||
#---------------------------------------------------#
|
||||
self.backbone = {
|
||||
'convnext_tiny' : ConvNeXt_Tiny,
|
||||
'convnext_small' : ConvNeXt_Small,
|
||||
'swin_transfomer_tiny' : Swin_transformer_Tiny,
|
||||
}[backbone](pretrained=pretrained, input_shape=input_shape)
|
||||
in_channels = {
|
||||
'convnext_tiny' : [192, 384, 768],
|
||||
'convnext_small' : [192, 384, 768],
|
||||
'swin_transfomer_tiny' : [192, 384, 768],
|
||||
}[backbone]
|
||||
feat1_c, feat2_c, feat3_c = in_channels
|
||||
self.conv_1x1_feat1 = Conv(feat1_c, base_channels * 4, 1, 1)
|
||||
self.conv_1x1_feat2 = Conv(feat2_c, base_channels * 8, 1, 1)
|
||||
self.conv_1x1_feat3 = Conv(feat3_c, base_channels * 16, 1, 1)
|
||||
|
||||
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
|
||||
|
||||
self.conv_for_feat3 = Conv(base_channels * 16, base_channels * 8, 1, 1)
|
||||
self.conv3_for_upsample1 = C3(base_channels * 16, base_channels * 8, base_depth, shortcut=False)
|
||||
|
||||
self.conv_for_feat2 = Conv(base_channels * 8, base_channels * 4, 1, 1)
|
||||
self.conv3_for_upsample2 = C3(base_channels * 8, base_channels * 4, base_depth, shortcut=False)
|
||||
|
||||
self.down_sample1 = Conv(base_channels * 4, base_channels * 4, 3, 2)
|
||||
self.conv3_for_downsample1 = C3(base_channels * 8, base_channels * 8, base_depth, shortcut=False)
|
||||
|
||||
self.down_sample2 = Conv(base_channels * 8, base_channels * 8, 3, 2)
|
||||
self.conv3_for_downsample2 = C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False)
|
||||
|
||||
# 80, 80, 256 => 80, 80, 3 * (5 + num_classes) => 80, 80, 3 * (4 + 1 + num_classes)
|
||||
self.yolo_head_P3 = nn.Conv2d(base_channels * 4, len(anchors_mask[2]) * (5 + num_classes), 1)
|
||||
# 40, 40, 512 => 40, 40, 3 * (5 + num_classes) => 40, 40, 3 * (4 + 1 + num_classes)
|
||||
self.yolo_head_P4 = nn.Conv2d(base_channels * 8, len(anchors_mask[1]) * (5 + num_classes), 1)
|
||||
# 20, 20, 1024 => 20, 20, 3 * (5 + num_classes) => 20, 20, 3 * (4 + 1 + num_classes)
|
||||
self.yolo_head_P5 = nn.Conv2d(base_channels * 16, len(anchors_mask[0]) * (5 + num_classes), 1)
|
||||
|
||||
def forward(self, x):
|
||||
# backbone
|
||||
feat1, feat2, feat3 = self.backbone(x)
|
||||
if self.backbone_name != "cspdarknet":
|
||||
feat1 = self.conv_1x1_feat1(feat1)
|
||||
feat2 = self.conv_1x1_feat2(feat2)
|
||||
feat3 = self.conv_1x1_feat3(feat3)
|
||||
|
||||
# 20, 20, 1024 -> 20, 20, 512
|
||||
P5 = self.conv_for_feat3(feat3)
|
||||
# 20, 20, 512 -> 40, 40, 512
|
||||
P5_upsample = self.upsample(P5)
|
||||
# 40, 40, 512 -> 40, 40, 1024
|
||||
P4 = torch.cat([P5_upsample, feat2], 1)
|
||||
# 40, 40, 1024 -> 40, 40, 512
|
||||
P4 = self.conv3_for_upsample1(P4)
|
||||
|
||||
# 40, 40, 512 -> 40, 40, 256
|
||||
P4 = self.conv_for_feat2(P4)
|
||||
# 40, 40, 256 -> 80, 80, 256
|
||||
P4_upsample = self.upsample(P4)
|
||||
# 80, 80, 256 cat 80, 80, 256 -> 80, 80, 512
|
||||
P3 = torch.cat([P4_upsample, feat1], 1)
|
||||
# 80, 80, 512 -> 80, 80, 256
|
||||
P3 = self.conv3_for_upsample2(P3)
|
||||
|
||||
# 80, 80, 256 -> 40, 40, 256
|
||||
P3_downsample = self.down_sample1(P3)
|
||||
# 40, 40, 256 cat 40, 40, 256 -> 40, 40, 512
|
||||
P4 = torch.cat([P3_downsample, P4], 1)
|
||||
# 40, 40, 512 -> 40, 40, 512
|
||||
P4 = self.conv3_for_downsample1(P4)
|
||||
|
||||
# 40, 40, 512 -> 20, 20, 512
|
||||
P4_downsample = self.down_sample2(P4)
|
||||
# 20, 20, 512 cat 20, 20, 512 -> 20, 20, 1024
|
||||
P5 = torch.cat([P4_downsample, P5], 1)
|
||||
# 20, 20, 1024 -> 20, 20, 1024
|
||||
P5 = self.conv3_for_downsample2(P5)
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 第三个特征层
|
||||
# y3=(batch_size,75,80,80)
|
||||
#---------------------------------------------------#
|
||||
out2 = self.yolo_head_P3(P3)
|
||||
#---------------------------------------------------#
|
||||
# 第二个特征层
|
||||
# y2=(batch_size,75,40,40)
|
||||
#---------------------------------------------------#
|
||||
out1 = self.yolo_head_P4(P4)
|
||||
#---------------------------------------------------#
|
||||
# 第一个特征层
|
||||
# y1=(batch_size,75,20,20)
|
||||
#---------------------------------------------------#
|
||||
out0 = self.yolo_head_P5(P5)
|
||||
return out0, out1, out2
|
||||
|
||||
465
nets/yolo_training.py
Normal file
465
nets/yolo_training.py
Normal file
@@ -0,0 +1,465 @@
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
class YOLOLoss(nn.Module):
|
||||
def __init__(self, anchors, num_classes, input_shape, cuda, anchors_mask = [[6,7,8], [3,4,5], [0,1,2]], label_smoothing = 0):
|
||||
super(YOLOLoss, self).__init__()
|
||||
#-----------------------------------------------------------#
|
||||
# 20x20的特征层对应的anchor是[116,90],[156,198],[373,326]
|
||||
# 40x40的特征层对应的anchor是[30,61],[62,45],[59,119]
|
||||
# 80x80的特征层对应的anchor是[10,13],[16,30],[33,23]
|
||||
#-----------------------------------------------------------#
|
||||
self.anchors = anchors
|
||||
self.num_classes = num_classes
|
||||
self.bbox_attrs = 5 + num_classes
|
||||
self.input_shape = input_shape
|
||||
self.anchors_mask = anchors_mask
|
||||
self.label_smoothing = label_smoothing
|
||||
|
||||
self.threshold = 4
|
||||
|
||||
self.balance = [0.4, 1.0, 4]
|
||||
self.box_ratio = 0.05
|
||||
self.obj_ratio = 1 * (input_shape[0] * input_shape[1]) / (640 ** 2)
|
||||
self.cls_ratio = 0.5 * (num_classes / 80)
|
||||
self.cuda = cuda
|
||||
|
||||
def clip_by_tensor(self, t, t_min, t_max):
|
||||
t = t.float()
|
||||
result = (t >= t_min).float() * t + (t < t_min).float() * t_min
|
||||
result = (result <= t_max).float() * result + (result > t_max).float() * t_max
|
||||
return result
|
||||
|
||||
def MSELoss(self, pred, target):
|
||||
return torch.pow(pred - target, 2)
|
||||
|
||||
def BCELoss(self, pred, target):
|
||||
epsilon = 1e-7
|
||||
pred = self.clip_by_tensor(pred, epsilon, 1.0 - epsilon)
|
||||
output = - target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred)
|
||||
return output
|
||||
|
||||
def box_giou(self, b1, b2):
|
||||
"""
|
||||
输入为:
|
||||
----------
|
||||
b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
|
||||
b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
|
||||
|
||||
返回为:
|
||||
-------
|
||||
giou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
|
||||
"""
|
||||
#----------------------------------------------------#
|
||||
# 求出预测框左上角右下角
|
||||
#----------------------------------------------------#
|
||||
b1_xy = b1[..., :2]
|
||||
b1_wh = b1[..., 2:4]
|
||||
b1_wh_half = b1_wh/2.
|
||||
b1_mins = b1_xy - b1_wh_half
|
||||
b1_maxes = b1_xy + b1_wh_half
|
||||
#----------------------------------------------------#
|
||||
# 求出真实框左上角右下角
|
||||
#----------------------------------------------------#
|
||||
b2_xy = b2[..., :2]
|
||||
b2_wh = b2[..., 2:4]
|
||||
b2_wh_half = b2_wh/2.
|
||||
b2_mins = b2_xy - b2_wh_half
|
||||
b2_maxes = b2_xy + b2_wh_half
|
||||
|
||||
#----------------------------------------------------#
|
||||
# 求真实框和预测框所有的iou
|
||||
#----------------------------------------------------#
|
||||
intersect_mins = torch.max(b1_mins, b2_mins)
|
||||
intersect_maxes = torch.min(b1_maxes, b2_maxes)
|
||||
intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes))
|
||||
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
|
||||
b1_area = b1_wh[..., 0] * b1_wh[..., 1]
|
||||
b2_area = b2_wh[..., 0] * b2_wh[..., 1]
|
||||
union_area = b1_area + b2_area - intersect_area
|
||||
iou = intersect_area / union_area
|
||||
|
||||
#----------------------------------------------------#
|
||||
# 找到包裹两个框的最小框的左上角和右下角
|
||||
#----------------------------------------------------#
|
||||
enclose_mins = torch.min(b1_mins, b2_mins)
|
||||
enclose_maxes = torch.max(b1_maxes, b2_maxes)
|
||||
enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes))
|
||||
#----------------------------------------------------#
|
||||
# 计算对角线距离
|
||||
#----------------------------------------------------#
|
||||
enclose_area = enclose_wh[..., 0] * enclose_wh[..., 1]
|
||||
giou = iou - (enclose_area - union_area) / enclose_area
|
||||
|
||||
return giou
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 平滑标签
|
||||
#---------------------------------------------------#
|
||||
def smooth_labels(self, y_true, label_smoothing, num_classes):
|
||||
return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes
|
||||
|
||||
def forward(self, l, input, targets=None, y_true=None):
|
||||
#----------------------------------------------------#
|
||||
# l 代表使用的是第几个有效特征层
|
||||
# input的shape为 bs, 3*(5+num_classes), 20, 20
|
||||
# bs, 3*(5+num_classes), 40, 40
|
||||
# bs, 3*(5+num_classes), 80, 80
|
||||
# targets 真实框的标签情况 [batch_size, num_gt, 5]
|
||||
#----------------------------------------------------#
|
||||
#--------------------------------#
|
||||
# 获得图片数量,特征层的高和宽
|
||||
# 20, 20
|
||||
#--------------------------------#
|
||||
bs = input.size(0)
|
||||
in_h = input.size(2)
|
||||
in_w = input.size(3)
|
||||
#-----------------------------------------------------------------------#
|
||||
# 计算步长
|
||||
# 每一个特征点对应原来的图片上多少个像素点
|
||||
# [640, 640] 高的步长为640 / 20 = 32,宽的步长为640 / 20 = 32
|
||||
# 如果特征层为20x20的话,一个特征点就对应原来的图片上的32个像素点
|
||||
# 如果特征层为40x40的话,一个特征点就对应原来的图片上的16个像素点
|
||||
# 如果特征层为80x80的话,一个特征点就对应原来的图片上的8个像素点
|
||||
# stride_h = stride_w = 32、16、8
|
||||
#-----------------------------------------------------------------------#
|
||||
stride_h = self.input_shape[0] / in_h
|
||||
stride_w = self.input_shape[1] / in_w
|
||||
#-------------------------------------------------#
|
||||
# 此时获得的scaled_anchors大小是相对于特征层的
|
||||
#-------------------------------------------------#
|
||||
scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors]
|
||||
#-----------------------------------------------#
|
||||
# 输入的input一共有三个,他们的shape分别是
|
||||
# bs, 3 * (5+num_classes), 20, 20 => bs, 3, 5 + num_classes, 20, 20 => batch_size, 3, 20, 20, 5 + num_classes
|
||||
|
||||
# batch_size, 3, 20, 20, 5 + num_classes
|
||||
# batch_size, 3, 40, 40, 5 + num_classes
|
||||
# batch_size, 3, 80, 80, 5 + num_classes
|
||||
#-----------------------------------------------#
|
||||
prediction = input.view(bs, len(self.anchors_mask[l]), self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
|
||||
|
||||
#-----------------------------------------------#
|
||||
# 先验框的中心位置的调整参数
|
||||
#-----------------------------------------------#
|
||||
x = torch.sigmoid(prediction[..., 0])
|
||||
y = torch.sigmoid(prediction[..., 1])
|
||||
#-----------------------------------------------#
|
||||
# 先验框的宽高调整参数
|
||||
#-----------------------------------------------#
|
||||
w = torch.sigmoid(prediction[..., 2])
|
||||
h = torch.sigmoid(prediction[..., 3])
|
||||
#-----------------------------------------------#
|
||||
# 获得置信度,是否有物体
|
||||
#-----------------------------------------------#
|
||||
conf = torch.sigmoid(prediction[..., 4])
|
||||
#-----------------------------------------------#
|
||||
# 种类置信度
|
||||
#-----------------------------------------------#
|
||||
pred_cls = torch.sigmoid(prediction[..., 5:])
|
||||
#-----------------------------------------------#
|
||||
# self.get_target已经合并到dataloader中
|
||||
# 原因是在这里执行过慢,会大大延长训练时间
|
||||
#-----------------------------------------------#
|
||||
# y_true, noobj_mask = self.get_target(l, targets, scaled_anchors, in_h, in_w)
|
||||
|
||||
#---------------------------------------------------------------#
|
||||
# 将预测结果进行解码,判断预测结果和真实值的重合程度
|
||||
# 如果重合程度过大则忽略,因为这些特征点属于预测比较准确的特征点
|
||||
# 作为负样本不合适
|
||||
#----------------------------------------------------------------#
|
||||
pred_boxes = self.get_pred_boxes(l, x, y, h, w, targets, scaled_anchors, in_h, in_w)
|
||||
|
||||
if self.cuda:
|
||||
y_true = y_true.type_as(x)
|
||||
|
||||
loss = 0
|
||||
n = torch.sum(y_true[..., 4] == 1)
|
||||
if n != 0:
|
||||
#---------------------------------------------------------------#
|
||||
# 计算预测结果和真实结果的giou,计算对应有真实框的先验框的giou损失
|
||||
# loss_cls计算对应有真实框的先验框的分类损失
|
||||
#----------------------------------------------------------------#
|
||||
giou = self.box_giou(pred_boxes, y_true[..., :4]).type_as(x)
|
||||
loss_loc = torch.mean((1 - giou)[y_true[..., 4] == 1])
|
||||
loss_cls = torch.mean(self.BCELoss(pred_cls[y_true[..., 4] == 1], self.smooth_labels(y_true[..., 5:][y_true[..., 4] == 1], self.label_smoothing, self.num_classes)))
|
||||
loss += loss_loc * self.box_ratio + loss_cls * self.cls_ratio
|
||||
#-----------------------------------------------------------#
|
||||
# 计算置信度的loss
|
||||
# 也就意味着先验框对应的预测框预测的更准确
|
||||
# 它才是用来预测这个物体的。
|
||||
#-----------------------------------------------------------#
|
||||
tobj = torch.where(y_true[..., 4] == 1, giou.detach().clamp(0), torch.zeros_like(y_true[..., 4]))
|
||||
else:
|
||||
tobj = torch.zeros_like(y_true[..., 4])
|
||||
loss_conf = torch.mean(self.BCELoss(conf, tobj))
|
||||
|
||||
loss += loss_conf * self.balance[l] * self.obj_ratio
|
||||
# if n != 0:
|
||||
# print(loss_loc * self.box_ratio, loss_cls * self.cls_ratio, loss_conf * self.balance[l] * self.obj_ratio)
|
||||
return loss
|
||||
|
||||
def get_near_points(self, x, y, i, j):
|
||||
sub_x = x - i
|
||||
sub_y = y - j
|
||||
if sub_x > 0.5 and sub_y > 0.5:
|
||||
return [[0, 0], [1, 0], [0, 1]]
|
||||
elif sub_x < 0.5 and sub_y > 0.5:
|
||||
return [[0, 0], [-1, 0], [0, 1]]
|
||||
elif sub_x < 0.5 and sub_y < 0.5:
|
||||
return [[0, 0], [-1, 0], [0, -1]]
|
||||
else:
|
||||
return [[0, 0], [1, 0], [0, -1]]
|
||||
|
||||
def get_target(self, l, targets, anchors, in_h, in_w):
|
||||
#-----------------------------------------------------#
|
||||
# 计算一共有多少张图片
|
||||
#-----------------------------------------------------#
|
||||
bs = len(targets)
|
||||
#-----------------------------------------------------#
|
||||
# 用于选取哪些先验框不包含物体
|
||||
# bs, 3, 20, 20
|
||||
#-----------------------------------------------------#
|
||||
noobj_mask = torch.ones(bs, len(self.anchors_mask[l]), in_h, in_w, requires_grad = False)
|
||||
#-----------------------------------------------------#
|
||||
# 帮助找到每一个先验框最对应的真实框
|
||||
#-----------------------------------------------------#
|
||||
box_best_ratio = torch.zeros(bs, len(self.anchors_mask[l]), in_h, in_w, requires_grad = False)
|
||||
#-----------------------------------------------------#
|
||||
# batch_size, 3, 20, 20, 5 + num_classes
|
||||
#-----------------------------------------------------#
|
||||
y_true = torch.zeros(bs, len(self.anchors_mask[l]), in_h, in_w, self.bbox_attrs, requires_grad = False)
|
||||
for b in range(bs):
|
||||
if len(targets[b])==0:
|
||||
continue
|
||||
batch_target = torch.zeros_like(targets[b])
|
||||
#-------------------------------------------------------#
|
||||
# 计算出正样本在特征层上的中心点
|
||||
# 获得真实框相对于特征层的大小
|
||||
#-------------------------------------------------------#
|
||||
batch_target[:, [0,2]] = targets[b][:, [0,2]] * in_w
|
||||
batch_target[:, [1,3]] = targets[b][:, [1,3]] * in_h
|
||||
batch_target[:, 4] = targets[b][:, 4]
|
||||
batch_target = batch_target.cpu()
|
||||
|
||||
#-----------------------------------------------------------------------------#
|
||||
# batch_target : num_true_box, 5
|
||||
# batch_target[:, 2:4] : num_true_box, 2
|
||||
# torch.unsqueeze(batch_target[:, 2:4], 1) : num_true_box, 1, 2
|
||||
# anchors : 9, 2
|
||||
# torch.unsqueeze(torch.FloatTensor(anchors), 0) : 1, 9, 2
|
||||
# ratios_of_gt_anchors : num_true_box, 9, 2
|
||||
# ratios_of_anchors_gt : num_true_box, 9, 2
|
||||
#
|
||||
# ratios : num_true_box, 9, 4
|
||||
# max_ratios : num_true_box, 9
|
||||
# max_ratios每一个真实框和每一个先验框的最大宽高比!
|
||||
#------------------------------------------------------------------------------#
|
||||
ratios_of_gt_anchors = torch.unsqueeze(batch_target[:, 2:4], 1) / torch.unsqueeze(torch.FloatTensor(anchors), 0)
|
||||
ratios_of_anchors_gt = torch.unsqueeze(torch.FloatTensor(anchors), 0) / torch.unsqueeze(batch_target[:, 2:4], 1)
|
||||
ratios = torch.cat([ratios_of_gt_anchors, ratios_of_anchors_gt], dim = -1)
|
||||
max_ratios, _ = torch.max(ratios, dim = -1)
|
||||
|
||||
for t, ratio in enumerate(max_ratios):
|
||||
#-------------------------------------------------------#
|
||||
# ratio : 9
|
||||
#-------------------------------------------------------#
|
||||
over_threshold = ratio < self.threshold
|
||||
over_threshold[torch.argmin(ratio)] = True
|
||||
for k, mask in enumerate(self.anchors_mask[l]):
|
||||
if not over_threshold[mask]:
|
||||
continue
|
||||
#----------------------------------------#
|
||||
# 获得真实框属于哪个网格点
|
||||
# x 1.25 => 1
|
||||
# y 3.75 => 3
|
||||
#----------------------------------------#
|
||||
i = torch.floor(batch_target[t, 0]).long()
|
||||
j = torch.floor(batch_target[t, 1]).long()
|
||||
|
||||
offsets = self.get_near_points(batch_target[t, 0], batch_target[t, 1], i, j)
|
||||
for offset in offsets:
|
||||
local_i = i + offset[0]
|
||||
local_j = j + offset[1]
|
||||
|
||||
if local_i >= in_w or local_i < 0 or local_j >= in_h or local_j < 0:
|
||||
continue
|
||||
|
||||
if box_best_ratio[b, k, local_j, local_i] != 0:
|
||||
if box_best_ratio[b, k, local_j, local_i] > ratio[mask]:
|
||||
y_true[b, k, local_j, local_i, :] = 0
|
||||
else:
|
||||
continue
|
||||
|
||||
#----------------------------------------#
|
||||
# 取出真实框的种类
|
||||
#----------------------------------------#
|
||||
c = batch_target[t, 4].long()
|
||||
|
||||
#----------------------------------------#
|
||||
# noobj_mask代表无目标的特征点
|
||||
#----------------------------------------#
|
||||
noobj_mask[b, k, local_j, local_i] = 0
|
||||
#----------------------------------------#
|
||||
# tx、ty代表中心调整参数的真实值
|
||||
#----------------------------------------#
|
||||
y_true[b, k, local_j, local_i, 0] = batch_target[t, 0]
|
||||
y_true[b, k, local_j, local_i, 1] = batch_target[t, 1]
|
||||
y_true[b, k, local_j, local_i, 2] = batch_target[t, 2]
|
||||
y_true[b, k, local_j, local_i, 3] = batch_target[t, 3]
|
||||
y_true[b, k, local_j, local_i, 4] = 1
|
||||
y_true[b, k, local_j, local_i, c + 5] = 1
|
||||
#----------------------------------------#
|
||||
# 获得当前先验框最好的比例
|
||||
#----------------------------------------#
|
||||
box_best_ratio[b, k, local_j, local_i] = ratio[mask]
|
||||
|
||||
return y_true, noobj_mask
|
||||
|
||||
def get_pred_boxes(self, l, x, y, h, w, targets, scaled_anchors, in_h, in_w):
|
||||
#-----------------------------------------------------#
|
||||
# 计算一共有多少张图片
|
||||
#-----------------------------------------------------#
|
||||
bs = len(targets)
|
||||
|
||||
#-----------------------------------------------------#
|
||||
# 生成网格,先验框中心,网格左上角
|
||||
#-----------------------------------------------------#
|
||||
grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_h, 1).repeat(
|
||||
int(bs * len(self.anchors_mask[l])), 1, 1).view(x.shape).type_as(x)
|
||||
grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_w, 1).t().repeat(
|
||||
int(bs * len(self.anchors_mask[l])), 1, 1).view(y.shape).type_as(x)
|
||||
|
||||
# 生成先验框的宽高
|
||||
scaled_anchors_l = np.array(scaled_anchors)[self.anchors_mask[l]]
|
||||
anchor_w = torch.Tensor(scaled_anchors_l).index_select(1, torch.LongTensor([0])).type_as(x)
|
||||
anchor_h = torch.Tensor(scaled_anchors_l).index_select(1, torch.LongTensor([1])).type_as(x)
|
||||
|
||||
anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
|
||||
anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
|
||||
#-------------------------------------------------------#
|
||||
# 计算调整后的先验框中心与宽高
|
||||
#-------------------------------------------------------#
|
||||
pred_boxes_x = torch.unsqueeze(x * 2. - 0.5 + grid_x, -1)
|
||||
pred_boxes_y = torch.unsqueeze(y * 2. - 0.5 + grid_y, -1)
|
||||
pred_boxes_w = torch.unsqueeze((w * 2) ** 2 * anchor_w, -1)
|
||||
pred_boxes_h = torch.unsqueeze((h * 2) ** 2 * anchor_h, -1)
|
||||
pred_boxes = torch.cat([pred_boxes_x, pred_boxes_y, pred_boxes_w, pred_boxes_h], dim = -1)
|
||||
return pred_boxes
|
||||
|
||||
def is_parallel(model):
|
||||
# Returns True if model is of type DP or DDP
|
||||
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||
|
||||
def de_parallel(model):
|
||||
# De-parallelize a model: returns single-GPU model if model is of type DP or DDP
|
||||
return model.module if is_parallel(model) else model
|
||||
|
||||
def copy_attr(a, b, include=(), exclude=()):
|
||||
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||
for k, v in b.__dict__.items():
|
||||
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||
continue
|
||||
else:
|
||||
setattr(a, k, v)
|
||||
|
||||
class ModelEMA:
|
||||
""" Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
|
||||
Keeps a moving average of everything in the model state_dict (parameters and buffers)
|
||||
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||
"""
|
||||
|
||||
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
|
||||
# Create EMA
|
||||
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
|
||||
# if next(model.parameters()).device.type != 'cpu':
|
||||
# self.ema.half() # FP16 EMA
|
||||
self.updates = updates # number of EMA updates
|
||||
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
|
||||
for p in self.ema.parameters():
|
||||
p.requires_grad_(False)
|
||||
|
||||
def update(self, model):
|
||||
# Update EMA parameters
|
||||
with torch.no_grad():
|
||||
self.updates += 1
|
||||
d = self.decay(self.updates)
|
||||
|
||||
msd = de_parallel(model).state_dict() # model state_dict
|
||||
for k, v in self.ema.state_dict().items():
|
||||
if v.dtype.is_floating_point:
|
||||
v *= d
|
||||
v += (1 - d) * msd[k].detach()
|
||||
|
||||
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||
# Update EMA attributes
|
||||
copy_attr(self.ema, model, include, exclude)
|
||||
|
||||
def weights_init(net, init_type='normal', init_gain = 0.02):
|
||||
def init_func(m):
|
||||
classname = m.__class__.__name__
|
||||
if hasattr(m, 'weight') and classname.find('Conv') != -1:
|
||||
if init_type == 'normal':
|
||||
torch.nn.init.normal_(m.weight.data, 0.0, init_gain)
|
||||
elif init_type == 'xavier':
|
||||
torch.nn.init.xavier_normal_(m.weight.data, gain=init_gain)
|
||||
elif init_type == 'kaiming':
|
||||
torch.nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
||||
elif init_type == 'orthogonal':
|
||||
torch.nn.init.orthogonal_(m.weight.data, gain=init_gain)
|
||||
else:
|
||||
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
|
||||
elif classname.find('BatchNorm2d') != -1:
|
||||
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
|
||||
torch.nn.init.constant_(m.bias.data, 0.0)
|
||||
print('initialize network with %s type' % init_type)
|
||||
net.apply(init_func)
|
||||
|
||||
def get_lr_scheduler(lr_decay_type, lr, min_lr, total_iters, warmup_iters_ratio = 0.05, warmup_lr_ratio = 0.1, no_aug_iter_ratio = 0.05, step_num = 10):
|
||||
def yolox_warm_cos_lr(lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter, iters):
|
||||
if iters <= warmup_total_iters:
|
||||
# lr = (lr - warmup_lr_start) * iters / float(warmup_total_iters) + warmup_lr_start
|
||||
lr = (lr - warmup_lr_start) * pow(iters / float(warmup_total_iters), 2
|
||||
) + warmup_lr_start
|
||||
elif iters >= total_iters - no_aug_iter:
|
||||
lr = min_lr
|
||||
else:
|
||||
lr = min_lr + 0.5 * (lr - min_lr) * (
|
||||
1.0
|
||||
+ math.cos(
|
||||
math.pi
|
||||
* (iters - warmup_total_iters)
|
||||
/ (total_iters - warmup_total_iters - no_aug_iter)
|
||||
)
|
||||
)
|
||||
return lr
|
||||
|
||||
def step_lr(lr, decay_rate, step_size, iters):
|
||||
if step_size < 1:
|
||||
raise ValueError("step_size must above 1.")
|
||||
n = iters // step_size
|
||||
out_lr = lr * decay_rate ** n
|
||||
return out_lr
|
||||
|
||||
if lr_decay_type == "cos":
|
||||
warmup_total_iters = min(max(warmup_iters_ratio * total_iters, 1), 3)
|
||||
warmup_lr_start = max(warmup_lr_ratio * lr, 1e-6)
|
||||
no_aug_iter = min(max(no_aug_iter_ratio * total_iters, 1), 15)
|
||||
func = partial(yolox_warm_cos_lr ,lr, min_lr, total_iters, warmup_total_iters, warmup_lr_start, no_aug_iter)
|
||||
else:
|
||||
decay_rate = (min_lr / lr) ** (1 / (step_num - 1))
|
||||
step_size = total_iters / step_num
|
||||
func = partial(step_lr, lr, decay_rate, step_size)
|
||||
|
||||
return func
|
||||
|
||||
def set_optimizer_lr(optimizer, lr_scheduler_func, epoch):
|
||||
lr = lr_scheduler_func(epoch)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
@@ -8,7 +8,7 @@ import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from network.yolo import YOLO, YOLO_ONNX
|
||||
from yolo import YOLO, YOLO_ONNX
|
||||
|
||||
if __name__ == "__main__":
|
||||
#----------------------------------------------------------------------------------------------------------#
|
||||
|
||||
32
summary.py
Normal file
32
summary.py
Normal file
@@ -0,0 +1,32 @@
|
||||
#--------------------------------------------#
|
||||
# 该部分代码用于看网络结构
|
||||
#--------------------------------------------#
|
||||
import torch
|
||||
from thop import clever_format, profile
|
||||
from torchsummary import summary
|
||||
|
||||
from nets.yolo import YoloBody
|
||||
|
||||
if __name__ == "__main__":
|
||||
input_shape = [640, 640]
|
||||
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
|
||||
num_classes = 80
|
||||
backbone = 'cspdarknet'
|
||||
phi = 'l'
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
m = YoloBody(anchors_mask, num_classes, phi, backbone=backbone).to(device)
|
||||
summary(m, (3, input_shape[0], input_shape[1]))
|
||||
|
||||
dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
|
||||
flops, params = profile(m.to(device), (dummy_input, ), verbose=False)
|
||||
#--------------------------------------------------------#
|
||||
# flops * 2是因为profile没有将卷积作为两个operations
|
||||
# 有些论文将卷积算乘法、加法两个operations。此时乘2
|
||||
# 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
|
||||
# 本代码选择乘2,参考YOLOX。
|
||||
#--------------------------------------------------------#
|
||||
flops = flops * 2
|
||||
flops, params = clever_format([flops, params], "%.3f")
|
||||
print('Total GFLOPS: %s' % (flops))
|
||||
print('Total params: %s' % (params))
|
||||
663
yolo.py
Normal file
663
yolo.py
Normal file
@@ -0,0 +1,663 @@
|
||||
import colorsys
|
||||
import os
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import ImageDraw, ImageFont, Image
|
||||
|
||||
from nets.yolo import YoloBody
|
||||
from utils.utils import (cvtColor, get_anchors, get_classes, preprocess_input,
|
||||
resize_image, show_config)
|
||||
from utils.utils_bbox import DecodeBox, DecodeBoxNP
|
||||
|
||||
'''
|
||||
训练自己的数据集必看注释!
|
||||
'''
|
||||
class YOLO(object):
|
||||
_defaults = {
|
||||
#--------------------------------------------------------------------------#
|
||||
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
|
||||
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
|
||||
#
|
||||
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
|
||||
# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
|
||||
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
|
||||
#--------------------------------------------------------------------------#
|
||||
"model_path" : r'logs-yolov5\1.pth',
|
||||
"classes_path" : 'model_data/coco_classes.txt',
|
||||
#---------------------------------------------------------------------#
|
||||
# anchors_path代表先验框对应的txt文件,一般不修改。
|
||||
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
|
||||
#---------------------------------------------------------------------#
|
||||
"anchors_path" : 'model_data/yolo_anchors.txt',
|
||||
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
|
||||
#---------------------------------------------------------------------#
|
||||
# 输入图片的大小,必须为32的倍数。
|
||||
#---------------------------------------------------------------------#
|
||||
"input_shape" : [640, 640],
|
||||
#------------------------------------------------------#
|
||||
# backbone cspdarknet(默认)
|
||||
# convnext_tiny
|
||||
# convnext_small
|
||||
# swin_transfomer_tiny
|
||||
#------------------------------------------------------#
|
||||
"backbone" : 'cspdarknet',
|
||||
#------------------------------------------------------#
|
||||
# 所使用的YoloV5的版本。s、m、l、x
|
||||
# 在除cspdarknet的其它主干中仅影响panet的大小
|
||||
#------------------------------------------------------#
|
||||
"phi" : 's',
|
||||
#---------------------------------------------------------------------#
|
||||
# 只有得分大于置信度的预测框会被保留下来
|
||||
#---------------------------------------------------------------------#
|
||||
"confidence" : 0.5,
|
||||
#---------------------------------------------------------------------#
|
||||
# 非极大抑制所用到的nms_iou大小
|
||||
#---------------------------------------------------------------------#
|
||||
"nms_iou" : 0.3,
|
||||
#---------------------------------------------------------------------#
|
||||
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
|
||||
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
|
||||
#---------------------------------------------------------------------#
|
||||
"letterbox_image" : True,
|
||||
#-------------------------------#
|
||||
# 是否使用Cuda
|
||||
# 没有GPU可以设置成False
|
||||
#-------------------------------#
|
||||
"cuda" : True,
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_defaults(cls, n):
|
||||
if n in cls._defaults:
|
||||
return cls._defaults[n]
|
||||
else:
|
||||
return "Unrecognized attribute name '" + n + "'"
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 初始化YOLO
|
||||
#---------------------------------------------------#
|
||||
def __init__(self, **kwargs):
|
||||
self.__dict__.update(self._defaults)
|
||||
for name, value in kwargs.items():
|
||||
setattr(self, name, value)
|
||||
self._defaults[name] = value
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 获得种类和先验框的数量
|
||||
#---------------------------------------------------#
|
||||
self.class_names, self.num_classes = get_classes(self.classes_path)
|
||||
self.anchors, self.num_anchors = get_anchors(self.anchors_path)
|
||||
self.bbox_util = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask)
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 画框设置不同的颜色
|
||||
#---------------------------------------------------#
|
||||
hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
|
||||
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
||||
self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
|
||||
self.generate()
|
||||
|
||||
show_config(**self._defaults)
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 生成模型
|
||||
#---------------------------------------------------#
|
||||
def generate(self, onnx=False):
|
||||
#---------------------------------------------------#
|
||||
# 建立yolo模型,载入yolo模型的权重
|
||||
#---------------------------------------------------#
|
||||
self.net = YoloBody(self.anchors_mask, self.num_classes, self.phi, backbone = self.backbone, input_shape = self.input_shape)
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
self.net.load_state_dict(torch.load(self.model_path, map_location=device),strict=False)
|
||||
self.net = self.net.eval()
|
||||
print('{} model, and classes loaded.'.format(self.model_path))
|
||||
if not onnx:
|
||||
if self.cuda:
|
||||
self.net = nn.DataParallel(self.net)
|
||||
self.net = self.net.cuda()
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 检测图片
|
||||
#---------------------------------------------------#
|
||||
def detect_image(self, image, crop = False, count = False):
|
||||
#---------------------------------------------------#
|
||||
# 计算输入图片的高和宽
|
||||
#---------------------------------------------------#
|
||||
image_shape = np.array(np.shape(image)[0:2])
|
||||
#---------------------------------------------------------#
|
||||
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
||||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||||
#---------------------------------------------------------#
|
||||
image = cvtColor(image)
|
||||
#---------------------------------------------------------#
|
||||
# 给图像增加灰条,实现不失真的resize
|
||||
# 也可以直接resize进行识别
|
||||
#---------------------------------------------------------#
|
||||
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
|
||||
#---------------------------------------------------------#
|
||||
# 添加上batch_size维度
|
||||
#---------------------------------------------------------#
|
||||
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
|
||||
|
||||
with torch.no_grad():
|
||||
images = torch.from_numpy(image_data)
|
||||
if self.cuda:
|
||||
images = images.cuda()
|
||||
#---------------------------------------------------------#
|
||||
# 将图像输入网络当中进行预测!
|
||||
#---------------------------------------------------------#
|
||||
outputs = self.net(images)
|
||||
outputs = self.bbox_util.decode_box(outputs)
|
||||
#---------------------------------------------------------#
|
||||
# 将预测框进行堆叠,然后进行非极大抑制
|
||||
#---------------------------------------------------------#
|
||||
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
|
||||
image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
|
||||
|
||||
if results[0] is None:
|
||||
return image
|
||||
|
||||
top_label = np.array(results[0][:, 6], dtype = 'int32')
|
||||
top_conf = results[0][:, 4] * results[0][:, 5]
|
||||
top_boxes = results[0][:, :4]
|
||||
#---------------------------------------------------------#
|
||||
# 设置字体与边框厚度
|
||||
#---------------------------------------------------------#
|
||||
font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
|
||||
thickness = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1))
|
||||
#---------------------------------------------------------#
|
||||
# 计数
|
||||
#---------------------------------------------------------#
|
||||
if count:
|
||||
print("top_label:", top_label)
|
||||
classes_nums = np.zeros([self.num_classes])
|
||||
for i in range(self.num_classes):
|
||||
num = np.sum(top_label == i)
|
||||
if num > 0:
|
||||
print(self.class_names[i], " : ", num)
|
||||
classes_nums[i] = num
|
||||
print("classes_nums:", classes_nums)
|
||||
#---------------------------------------------------------#
|
||||
# 是否进行目标的裁剪
|
||||
#---------------------------------------------------------#
|
||||
if crop:
|
||||
for i, c in list(enumerate(top_boxes)):
|
||||
top, left, bottom, right = top_boxes[i]
|
||||
top = max(0, np.floor(top).astype('int32'))
|
||||
left = max(0, np.floor(left).astype('int32'))
|
||||
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
|
||||
right = min(image.size[0], np.floor(right).astype('int32'))
|
||||
|
||||
dir_save_path = "img_crop"
|
||||
if not os.path.exists(dir_save_path):
|
||||
os.makedirs(dir_save_path)
|
||||
crop_image = image.crop([left, top, right, bottom])
|
||||
crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)
|
||||
print("save crop_" + str(i) + ".png to " + dir_save_path)
|
||||
#---------------------------------------------------------#
|
||||
# 图像绘制
|
||||
#---------------------------------------------------------#
|
||||
for i, c in list(enumerate(top_label)):
|
||||
predicted_class = self.class_names[int(c)]
|
||||
box = top_boxes[i]
|
||||
score = top_conf[i]
|
||||
|
||||
top, left, bottom, right = box
|
||||
|
||||
top = max(0, np.floor(top).astype('int32'))
|
||||
left = max(0, np.floor(left).astype('int32'))
|
||||
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
|
||||
right = min(image.size[0], np.floor(right).astype('int32'))
|
||||
|
||||
label = '{} {:.2f}'.format(predicted_class, score)
|
||||
draw = ImageDraw.Draw(image)
|
||||
label_size = draw.textsize(label, font)
|
||||
label = label.encode('utf-8')
|
||||
print(label, top, left, bottom, right)
|
||||
|
||||
if top - label_size[1] >= 0:
|
||||
text_origin = np.array([left, top - label_size[1]])
|
||||
else:
|
||||
text_origin = np.array([left, top + 1])
|
||||
|
||||
for i in range(thickness):
|
||||
draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
|
||||
draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
|
||||
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
|
||||
del draw
|
||||
|
||||
return image
|
||||
|
||||
def get_FPS(self, image, test_interval):
|
||||
image_shape = np.array(np.shape(image)[0:2])
|
||||
#---------------------------------------------------------#
|
||||
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
||||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||||
#---------------------------------------------------------#
|
||||
image = cvtColor(image)
|
||||
#---------------------------------------------------------#
|
||||
# 给图像增加灰条,实现不失真的resize
|
||||
# 也可以直接resize进行识别
|
||||
#---------------------------------------------------------#
|
||||
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
|
||||
#---------------------------------------------------------#
|
||||
# 添加上batch_size维度
|
||||
#---------------------------------------------------------#
|
||||
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
|
||||
|
||||
with torch.no_grad():
|
||||
images = torch.from_numpy(image_data)
|
||||
if self.cuda:
|
||||
images = images.cuda()
|
||||
#---------------------------------------------------------#
|
||||
# 将图像输入网络当中进行预测!
|
||||
#---------------------------------------------------------#
|
||||
outputs = self.net(images)
|
||||
outputs = self.bbox_util.decode_box(outputs)
|
||||
#---------------------------------------------------------#
|
||||
# 将预测框进行堆叠,然后进行非极大抑制
|
||||
#---------------------------------------------------------#
|
||||
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
|
||||
image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou)
|
||||
|
||||
t1 = time.time()
|
||||
for _ in range(test_interval):
|
||||
with torch.no_grad():
|
||||
#---------------------------------------------------------#
|
||||
# 将图像输入网络当中进行预测!
|
||||
#---------------------------------------------------------#
|
||||
outputs = self.net(images)
|
||||
outputs = self.bbox_util.decode_box(outputs)
|
||||
#---------------------------------------------------------#
|
||||
# 将预测框进行堆叠,然后进行非极大抑制
|
||||
#---------------------------------------------------------#
|
||||
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
|
||||
image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou)
|
||||
|
||||
t2 = time.time()
|
||||
tact_time = (t2 - t1) / test_interval
|
||||
return tact_time
|
||||
|
||||
def detect_heatmap(self, image, heatmap_save_path):
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
def sigmoid(x):
|
||||
y = 1.0 / (1.0 + np.exp(-x))
|
||||
return y
|
||||
#---------------------------------------------------------#
|
||||
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
||||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||||
#---------------------------------------------------------#
|
||||
image = cvtColor(image)
|
||||
#---------------------------------------------------------#
|
||||
# 给图像增加灰条,实现不失真的resize
|
||||
# 也可以直接resize进行识别
|
||||
#---------------------------------------------------------#
|
||||
image_data = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
|
||||
#---------------------------------------------------------#
|
||||
# 添加上batch_size维度
|
||||
#---------------------------------------------------------#
|
||||
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
|
||||
|
||||
with torch.no_grad():
|
||||
images = torch.from_numpy(image_data)
|
||||
if self.cuda:
|
||||
images = images.cuda()
|
||||
#---------------------------------------------------------#
|
||||
# 将图像输入网络当中进行预测!
|
||||
#---------------------------------------------------------#
|
||||
outputs = self.net(images)
|
||||
|
||||
plt.imshow(image, alpha=1)
|
||||
plt.axis('off')
|
||||
mask = np.zeros((image.size[1], image.size[0]))
|
||||
for sub_output in outputs:
|
||||
sub_output = sub_output.cpu().numpy()
|
||||
b, c, h, w = np.shape(sub_output)
|
||||
sub_output = np.transpose(np.reshape(sub_output, [b, 3, -1, h, w]), [0, 3, 4, 1, 2])[0]
|
||||
score = np.max(sigmoid(sub_output[..., 4]), -1)
|
||||
score = cv2.resize(score, (image.size[0], image.size[1]))
|
||||
normed_score = (score * 255).astype('uint8')
|
||||
mask = np.maximum(mask, normed_score)
|
||||
|
||||
plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet")
|
||||
|
||||
plt.axis('off')
|
||||
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
|
||||
plt.margins(0, 0)
|
||||
plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches = -0.1)
|
||||
print("Save to the " + heatmap_save_path)
|
||||
plt.show()
|
||||
|
||||
def convert_to_onnx(self, simplify, model_path):
|
||||
import onnx
|
||||
self.generate(onnx=True)
|
||||
|
||||
im = torch.zeros(1, 3, *self.input_shape).to('cpu') # image size(1, 3, 512, 512) BCHW
|
||||
input_layer_names = ["images"]
|
||||
output_layer_names = ["output"]
|
||||
|
||||
# Export the model
|
||||
print(f'Starting export with onnx {onnx.__version__}.')
|
||||
torch.onnx.export(self.net,
|
||||
im,
|
||||
f = model_path,
|
||||
verbose = False,
|
||||
opset_version = 12,
|
||||
training = torch.onnx.TrainingMode.EVAL,
|
||||
do_constant_folding = True,
|
||||
input_names = input_layer_names,
|
||||
output_names = output_layer_names,
|
||||
dynamic_axes = None)
|
||||
|
||||
# Checks
|
||||
model_onnx = onnx.load(model_path) # load onnx model
|
||||
onnx.checker.check_model(model_onnx) # check onnx model
|
||||
|
||||
# Simplify onnx
|
||||
if simplify:
|
||||
import onnxsim
|
||||
print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')
|
||||
model_onnx, check = onnxsim.simplify(
|
||||
model_onnx,
|
||||
dynamic_input_shape=False,
|
||||
input_shapes=None)
|
||||
assert check, 'assert check failed'
|
||||
onnx.save(model_onnx, model_path)
|
||||
|
||||
print('Onnx model save as {}'.format(model_path))
|
||||
|
||||
def get_map_txt(self, image_id, image, class_names, map_out_path):
|
||||
f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"), "w", encoding='utf-8')
|
||||
image_shape = np.array(np.shape(image)[0:2])
|
||||
#---------------------------------------------------------#
|
||||
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
||||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||||
#---------------------------------------------------------#
|
||||
image = cvtColor(image)
|
||||
#---------------------------------------------------------#
|
||||
# 给图像增加灰条,实现不失真的resize
|
||||
# 也可以直接resize进行识别
|
||||
#---------------------------------------------------------#
|
||||
image_data = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
|
||||
#---------------------------------------------------------#
|
||||
# 添加上batch_size维度
|
||||
#---------------------------------------------------------#
|
||||
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
|
||||
|
||||
with torch.no_grad():
|
||||
images = torch.from_numpy(image_data)
|
||||
if self.cuda:
|
||||
images = images.cuda()
|
||||
#---------------------------------------------------------#
|
||||
# 将图像输入网络当中进行预测!
|
||||
#---------------------------------------------------------#
|
||||
outputs = self.net(images)
|
||||
outputs = self.bbox_util.decode_box(outputs)
|
||||
#---------------------------------------------------------#
|
||||
# 将预测框进行堆叠,然后进行非极大抑制
|
||||
#---------------------------------------------------------#
|
||||
results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape,
|
||||
image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
|
||||
|
||||
if results[0] is None:
|
||||
return
|
||||
|
||||
top_label = np.array(results[0][:, 6], dtype = 'int32')
|
||||
top_conf = results[0][:, 4] * results[0][:, 5]
|
||||
top_boxes = results[0][:, :4]
|
||||
|
||||
for i, c in list(enumerate(top_label)):
|
||||
predicted_class = self.class_names[int(c)]
|
||||
box = top_boxes[i]
|
||||
score = str(top_conf[i])
|
||||
|
||||
top, left, bottom, right = box
|
||||
if predicted_class not in class_names:
|
||||
continue
|
||||
|
||||
f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
|
||||
|
||||
f.close()
|
||||
return
|
||||
|
||||
class YOLO_ONNX(object):
|
||||
_defaults = {
|
||||
#--------------------------------------------------------------------------#
|
||||
# 使用自己训练好的模型进行预测一定要修改onnx_path和classes_path!
|
||||
# onnx_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
|
||||
#
|
||||
# 训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
|
||||
# 验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
|
||||
# 如果出现shape不匹配,同时要注意训练时的onnx_path和classes_path参数的修改
|
||||
#--------------------------------------------------------------------------#
|
||||
"onnx_path" : 'model_data/models.onnx',
|
||||
"classes_path" : 'model_data/coco_classes.txt',
|
||||
#---------------------------------------------------------------------#
|
||||
# anchors_path代表先验框对应的txt文件,一般不修改。
|
||||
# anchors_mask用于帮助代码找到对应的先验框,一般不修改。
|
||||
#---------------------------------------------------------------------#
|
||||
"anchors_path" : 'model_data/yolo_anchors.txt',
|
||||
"anchors_mask" : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
|
||||
#---------------------------------------------------------------------#
|
||||
# 输入图片的大小,必须为32的倍数。
|
||||
#---------------------------------------------------------------------#
|
||||
"input_shape" : [640, 640],
|
||||
#---------------------------------------------------------------------#
|
||||
# 只有得分大于置信度的预测框会被保留下来
|
||||
#---------------------------------------------------------------------#
|
||||
"confidence" : 0.5,
|
||||
#---------------------------------------------------------------------#
|
||||
# 非极大抑制所用到的nms_iou大小
|
||||
#---------------------------------------------------------------------#
|
||||
"nms_iou" : 0.3,
|
||||
#---------------------------------------------------------------------#
|
||||
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
|
||||
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
|
||||
#---------------------------------------------------------------------#
|
||||
"letterbox_image" : True
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_defaults(cls, n):
|
||||
if n in cls._defaults:
|
||||
return cls._defaults[n]
|
||||
else:
|
||||
return "Unrecognized attribute name '" + n + "'"
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 初始化YOLO
|
||||
#---------------------------------------------------#
|
||||
def __init__(self, **kwargs):
|
||||
self.__dict__.update(self._defaults)
|
||||
for name, value in kwargs.items():
|
||||
setattr(self, name, value)
|
||||
self._defaults[name] = value
|
||||
|
||||
import onnxruntime
|
||||
self.onnx_session = onnxruntime.InferenceSession(self.onnx_path)
|
||||
# 获得所有的输入node
|
||||
self.input_name = self.get_input_name()
|
||||
# 获得所有的输出node
|
||||
self.output_name = self.get_output_name()
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 获得种类和先验框的数量
|
||||
#---------------------------------------------------#
|
||||
self.class_names, self.num_classes = self.get_classes(self.classes_path)
|
||||
self.anchors, self.num_anchors = self.get_anchors(self.anchors_path)
|
||||
self.bbox_util = DecodeBoxNP(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask)
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 画框设置不同的颜色
|
||||
#---------------------------------------------------#
|
||||
hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
|
||||
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
|
||||
self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
|
||||
|
||||
show_config(**self._defaults)
|
||||
|
||||
def get_classes(self, classes_path):
|
||||
with open(classes_path, encoding='utf-8') as f:
|
||||
class_names = f.readlines()
|
||||
class_names = [c.strip() for c in class_names]
|
||||
return class_names, len(class_names)
|
||||
|
||||
def get_anchors(self, anchors_path):
|
||||
'''loads the anchors from a file'''
|
||||
with open(anchors_path, encoding='utf-8') as f:
|
||||
anchors = f.readline()
|
||||
anchors = [float(x) for x in anchors.split(',')]
|
||||
anchors = np.array(anchors).reshape(-1, 2)
|
||||
return anchors, len(anchors)
|
||||
|
||||
def get_input_name(self):
|
||||
# 获得所有的输入node
|
||||
input_name=[]
|
||||
for node in self.onnx_session.get_inputs():
|
||||
input_name.append(node.name)
|
||||
return input_name
|
||||
|
||||
def get_output_name(self):
|
||||
# 获得所有的输出node
|
||||
output_name=[]
|
||||
for node in self.onnx_session.get_outputs():
|
||||
output_name.append(node.name)
|
||||
return output_name
|
||||
|
||||
def get_input_feed(self,image_tensor):
|
||||
# 利用input_name获得输入的tensor
|
||||
input_feed={}
|
||||
for name in self.input_name:
|
||||
input_feed[name]=image_tensor
|
||||
return input_feed
|
||||
|
||||
#---------------------------------------------------#
|
||||
# 对输入图像进行resize
|
||||
#---------------------------------------------------#
|
||||
def resize_image(self, image, size, letterbox_image, mode='PIL'):
|
||||
if mode == 'PIL':
|
||||
iw, ih = image.size
|
||||
w, h = size
|
||||
|
||||
if letterbox_image:
|
||||
scale = min(w/iw, h/ih)
|
||||
nw = int(iw*scale)
|
||||
nh = int(ih*scale)
|
||||
|
||||
image = image.resize((nw,nh), Image.BICUBIC)
|
||||
new_image = Image.new('RGB', size, (128,128,128))
|
||||
new_image.paste(image, ((w-nw)//2, (h-nh)//2))
|
||||
else:
|
||||
new_image = image.resize((w, h), Image.BICUBIC)
|
||||
else:
|
||||
image = np.array(image)
|
||||
if letterbox_image:
|
||||
# 获得现在的shape
|
||||
shape = np.shape(image)[:2]
|
||||
# 获得输出的shape
|
||||
if isinstance(size, int):
|
||||
size = (size, size)
|
||||
|
||||
# 计算缩放的比例
|
||||
r = min(size[0] / shape[0], size[1] / shape[1])
|
||||
|
||||
# 计算缩放后图片的高宽
|
||||
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
||||
dw, dh = size[1] - new_unpad[0], size[0] - new_unpad[1]
|
||||
|
||||
# 除以2以padding到两边
|
||||
dw /= 2
|
||||
dh /= 2
|
||||
|
||||
# 对图像进行resize
|
||||
if shape[::-1] != new_unpad: # resize
|
||||
image = cv2.resize(image, new_unpad, interpolation=cv2.INTER_LINEAR)
|
||||
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
||||
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
||||
|
||||
new_image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(128, 128, 128)) # add border
|
||||
else:
|
||||
new_image = cv2.resize(image, (w, h))
|
||||
|
||||
return new_image
|
||||
|
||||
def detect_image(self, image):
|
||||
image_shape = np.array(np.shape(image)[0:2])
|
||||
#---------------------------------------------------------#
|
||||
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
||||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||||
#---------------------------------------------------------#
|
||||
image = cvtColor(image)
|
||||
|
||||
image_data = self.resize_image(image, self.input_shape, True)
|
||||
#---------------------------------------------------------#
|
||||
# 添加上batch_size维度
|
||||
# h, w, 3 => 3, h, w => 1, 3, h, w
|
||||
#---------------------------------------------------------#
|
||||
image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
|
||||
|
||||
input_feed = self.get_input_feed(image_data)
|
||||
outputs = self.onnx_session.run(output_names=self.output_name, input_feed=input_feed)
|
||||
|
||||
feature_map_shape = [[int(j / (2 ** (i + 3))) for j in self.input_shape] for i in range(len(self.anchors_mask))][::-1]
|
||||
for i in range(len(self.anchors_mask)):
|
||||
outputs[i] = np.reshape(outputs[i], (1, len(self.anchors_mask[i]) * (5 + self.num_classes), feature_map_shape[i][0], feature_map_shape[i][1]))
|
||||
|
||||
outputs = self.bbox_util.decode_box(outputs)
|
||||
#---------------------------------------------------------#
|
||||
# 将预测框进行堆叠,然后进行非极大抑制
|
||||
#---------------------------------------------------------#
|
||||
results = self.bbox_util.non_max_suppression(np.concatenate(outputs, 1), self.num_classes, self.input_shape,
|
||||
image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
|
||||
|
||||
if results[0] is None:
|
||||
return image
|
||||
|
||||
top_label = np.array(results[0][:, 6], dtype = 'int32')
|
||||
top_conf = results[0][:, 4] * results[0][:, 5]
|
||||
top_boxes = results[0][:, :4]
|
||||
|
||||
#---------------------------------------------------------#
|
||||
# 设置字体与边框厚度
|
||||
#---------------------------------------------------------#
|
||||
font = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
|
||||
thickness = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1))
|
||||
|
||||
#---------------------------------------------------------#
|
||||
# 图像绘制
|
||||
#---------------------------------------------------------#
|
||||
for i, c in list(enumerate(top_label)):
|
||||
predicted_class = self.class_names[int(c)]
|
||||
box = top_boxes[i]
|
||||
score = top_conf[i]
|
||||
|
||||
top, left, bottom, right = box
|
||||
|
||||
top = max(0, np.floor(top).astype('int32'))
|
||||
left = max(0, np.floor(left).astype('int32'))
|
||||
bottom = min(image.size[1], np.floor(bottom).astype('int32'))
|
||||
right = min(image.size[0], np.floor(right).astype('int32'))
|
||||
|
||||
label = '{} {:.2f}'.format(predicted_class, score)
|
||||
draw = ImageDraw.Draw(image)
|
||||
label_size = draw.textsize(label, font)
|
||||
label = label.encode('utf-8')
|
||||
print(label, top, left, bottom, right)
|
||||
|
||||
if top - label_size[1] >= 0:
|
||||
text_origin = np.array([left, top - label_size[1]])
|
||||
else:
|
||||
text_origin = np.array([left, top + 1])
|
||||
|
||||
for i in range(thickness):
|
||||
draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
|
||||
draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
|
||||
draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
|
||||
del draw
|
||||
|
||||
return image
|
||||
Reference in New Issue
Block a user