923 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			923 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import glob
 | ||
| import json
 | ||
| import math
 | ||
| import operator
 | ||
| import os
 | ||
| import shutil
 | ||
| import sys
 | ||
| try:
 | ||
|     from pycocotools.coco import COCO
 | ||
|     from pycocotools.cocoeval import COCOeval
 | ||
| except:
 | ||
|     pass
 | ||
| import cv2
 | ||
| import matplotlib
 | ||
| matplotlib.use('Agg')
 | ||
| from matplotlib import pyplot as plt
 | ||
| import numpy as np
 | ||
| 
 | ||
| '''
 | ||
|     0,0 ------> x (width)
 | ||
|      |
 | ||
|      |  (Left,Top)
 | ||
|      |      *_________
 | ||
|      |      |         |
 | ||
|             |         |
 | ||
|      y      |_________|
 | ||
|   (height)            *
 | ||
|                 (Right,Bottom)
 | ||
| '''
 | ||
| 
 | ||
| def log_average_miss_rate(precision, fp_cumsum, num_images):
 | ||
|     """
 | ||
|         log-average miss rate:
 | ||
|             Calculated by averaging miss rates at 9 evenly spaced FPPI points
 | ||
|             between 10e-2 and 10e0, in log-space.
 | ||
| 
 | ||
|         output:
 | ||
|                 lamr | log-average miss rate
 | ||
|                 mr | miss rate
 | ||
|                 fppi | false positives per image
 | ||
| 
 | ||
|         references:
 | ||
|             [1] Dollar, Piotr, et al. "Pedestrian Detection: An Evaluation of the
 | ||
|                State of the Art." Pattern Analysis and Machine Intelligence, IEEE
 | ||
|                Transactions on 34.4 (2012): 743 - 761.
 | ||
|     """
 | ||
| 
 | ||
|     if precision.size == 0:
 | ||
|         lamr = 0
 | ||
|         mr = 1
 | ||
|         fppi = 0
 | ||
|         return lamr, mr, fppi
 | ||
| 
 | ||
|     fppi = fp_cumsum / float(num_images)
 | ||
|     mr = (1 - precision)
 | ||
| 
 | ||
|     fppi_tmp = np.insert(fppi, 0, -1.0)
 | ||
|     mr_tmp = np.insert(mr, 0, 1.0)
 | ||
| 
 | ||
|     ref = np.logspace(-2.0, 0.0, num = 9)
 | ||
|     for i, ref_i in enumerate(ref):
 | ||
|         j = np.where(fppi_tmp <= ref_i)[-1][-1]
 | ||
|         ref[i] = mr_tmp[j]
 | ||
| 
 | ||
|     lamr = math.exp(np.mean(np.log(np.maximum(1e-10, ref))))
 | ||
| 
 | ||
|     return lamr, mr, fppi
 | ||
| 
 | ||
| """
 | ||
|  throw error and exit
 | ||
| """
 | ||
| def error(msg):
 | ||
|     print(msg)
 | ||
|     sys.exit(0)
 | ||
| 
 | ||
| """
 | ||
|  check if the number is a float between 0.0 and 1.0
 | ||
| """
 | ||
| def is_float_between_0_and_1(value):
 | ||
|     try:
 | ||
|         val = float(value)
 | ||
|         if val > 0.0 and val < 1.0:
 | ||
|             return True
 | ||
|         else:
 | ||
|             return False
 | ||
|     except ValueError:
 | ||
|         return False
 | ||
| 
 | ||
| """
 | ||
|  Calculate the AP given the recall and precision array
 | ||
|     1st) We compute a version of the measured precision/recall curve with
 | ||
|          precision monotonically decreasing
 | ||
|     2nd) We compute the AP as the area under this curve by numerical integration.
 | ||
| """
 | ||
| def voc_ap(rec, prec):
 | ||
|     """
 | ||
|     --- Official matlab code VOC2012---
 | ||
|     mrec=[0 ; rec ; 1];
 | ||
|     mpre=[0 ; prec ; 0];
 | ||
|     for i=numel(mpre)-1:-1:1
 | ||
|             mpre(i)=max(mpre(i),mpre(i+1));
 | ||
|     end
 | ||
|     i=find(mrec(2:end)~=mrec(1:end-1))+1;
 | ||
|     ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
 | ||
|     """
 | ||
|     rec.insert(0, 0.0) # insert 0.0 at begining of list
 | ||
|     rec.append(1.0) # insert 1.0 at end of list
 | ||
|     mrec = rec[:]
 | ||
|     prec.insert(0, 0.0) # insert 0.0 at begining of list
 | ||
|     prec.append(0.0) # insert 0.0 at end of list
 | ||
|     mpre = prec[:]
 | ||
|     """
 | ||
|      This part makes the precision monotonically decreasing
 | ||
|         (goes from the end to the beginning)
 | ||
|         matlab: for i=numel(mpre)-1:-1:1
 | ||
|                     mpre(i)=max(mpre(i),mpre(i+1));
 | ||
|     """
 | ||
|     for i in range(len(mpre)-2, -1, -1):
 | ||
|         mpre[i] = max(mpre[i], mpre[i+1])
 | ||
|     """
 | ||
|      This part creates a list of indexes where the recall changes
 | ||
|         matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
 | ||
|     """
 | ||
|     i_list = []
 | ||
|     for i in range(1, len(mrec)):
 | ||
|         if mrec[i] != mrec[i-1]:
 | ||
|             i_list.append(i) # if it was matlab would be i + 1
 | ||
|     """
 | ||
|      The Average Precision (AP) is the area under the curve
 | ||
|         (numerical integration)
 | ||
|         matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
 | ||
|     """
 | ||
|     ap = 0.0
 | ||
|     for i in i_list:
 | ||
|         ap += ((mrec[i]-mrec[i-1])*mpre[i])
 | ||
|     return ap, mrec, mpre
 | ||
| 
 | ||
| 
 | ||
| """
 | ||
|  Convert the lines of a file to a list
 | ||
| """
 | ||
| def file_lines_to_list(path):
 | ||
|     # open txt file lines to a list
 | ||
|     with open(path) as f:
 | ||
|         content = f.readlines()
 | ||
|     # remove whitespace characters like `\n` at the end of each line
 | ||
|     content = [x.strip() for x in content]
 | ||
|     return content
 | ||
| 
 | ||
| """
 | ||
|  Draws text in image
 | ||
| """
 | ||
| def draw_text_in_image(img, text, pos, color, line_width):
 | ||
|     font = cv2.FONT_HERSHEY_PLAIN
 | ||
|     fontScale = 1
 | ||
|     lineType = 1
 | ||
|     bottomLeftCornerOfText = pos
 | ||
|     cv2.putText(img, text,
 | ||
|             bottomLeftCornerOfText,
 | ||
|             font,
 | ||
|             fontScale,
 | ||
|             color,
 | ||
|             lineType)
 | ||
|     text_width, _ = cv2.getTextSize(text, font, fontScale, lineType)[0]
 | ||
|     return img, (line_width + text_width)
 | ||
| 
 | ||
| """
 | ||
|  Plot - adjust axes
 | ||
| """
 | ||
| def adjust_axes(r, t, fig, axes):
 | ||
|     # get text width for re-scaling
 | ||
|     bb = t.get_window_extent(renderer=r)
 | ||
|     text_width_inches = bb.width / fig.dpi
 | ||
|     # get axis width in inches
 | ||
|     current_fig_width = fig.get_figwidth()
 | ||
|     new_fig_width = current_fig_width + text_width_inches
 | ||
|     propotion = new_fig_width / current_fig_width
 | ||
|     # get axis limit
 | ||
|     x_lim = axes.get_xlim()
 | ||
|     axes.set_xlim([x_lim[0], x_lim[1]*propotion])
 | ||
| 
 | ||
| """
 | ||
|  Draw plot using Matplotlib
 | ||
| """
 | ||
| def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
 | ||
|     # sort the dictionary by decreasing value, into a list of tuples
 | ||
|     sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
 | ||
|     # unpacking the list of tuples into two lists
 | ||
|     sorted_keys, sorted_values = zip(*sorted_dic_by_value)
 | ||
|     # 
 | ||
|     if true_p_bar != "":
 | ||
|         """
 | ||
|          Special case to draw in:
 | ||
|             - green -> TP: True Positives (object detected and matches ground-truth)
 | ||
|             - red -> FP: False Positives (object detected but does not match ground-truth)
 | ||
|             - orange -> FN: False Negatives (object not detected but present in the ground-truth)
 | ||
|         """
 | ||
|         fp_sorted = []
 | ||
|         tp_sorted = []
 | ||
|         for key in sorted_keys:
 | ||
|             fp_sorted.append(dictionary[key] - true_p_bar[key])
 | ||
|             tp_sorted.append(true_p_bar[key])
 | ||
|         plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
 | ||
|         plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
 | ||
|         # add legend
 | ||
|         plt.legend(loc='lower right')
 | ||
|         """
 | ||
|          Write number on side of bar
 | ||
|         """
 | ||
|         fig = plt.gcf() # gcf - get current figure
 | ||
|         axes = plt.gca()
 | ||
|         r = fig.canvas.get_renderer()
 | ||
|         for i, val in enumerate(sorted_values):
 | ||
|             fp_val = fp_sorted[i]
 | ||
|             tp_val = tp_sorted[i]
 | ||
|             fp_str_val = " " + str(fp_val)
 | ||
|             tp_str_val = fp_str_val + " " + str(tp_val)
 | ||
|             # trick to paint multicolor with offset:
 | ||
|             # first paint everything and then repaint the first number
 | ||
|             t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
 | ||
|             plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
 | ||
|             if i == (len(sorted_values)-1): # largest bar
 | ||
|                 adjust_axes(r, t, fig, axes)
 | ||
|     else:
 | ||
|         plt.barh(range(n_classes), sorted_values, color=plot_color)
 | ||
|         """
 | ||
|          Write number on side of bar
 | ||
|         """
 | ||
|         fig = plt.gcf() # gcf - get current figure
 | ||
|         axes = plt.gca()
 | ||
|         r = fig.canvas.get_renderer()
 | ||
|         for i, val in enumerate(sorted_values):
 | ||
|             str_val = " " + str(val) # add a space before
 | ||
|             if val < 1.0:
 | ||
|                 str_val = " {0:.2f}".format(val)
 | ||
|             t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
 | ||
|             # re-set axes to show number inside the figure
 | ||
|             if i == (len(sorted_values)-1): # largest bar
 | ||
|                 adjust_axes(r, t, fig, axes)
 | ||
|     # set window title
 | ||
|     fig.canvas.set_window_title(window_title)
 | ||
|     # write classes in y axis
 | ||
|     tick_font_size = 12
 | ||
|     plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
 | ||
|     """
 | ||
|      Re-scale height accordingly
 | ||
|     """
 | ||
|     init_height = fig.get_figheight()
 | ||
|     # comput the matrix height in points and inches
 | ||
|     dpi = fig.dpi
 | ||
|     height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
 | ||
|     height_in = height_pt / dpi
 | ||
|     # compute the required figure height 
 | ||
|     top_margin = 0.15 # in percentage of the figure height
 | ||
|     bottom_margin = 0.05 # in percentage of the figure height
 | ||
|     figure_height = height_in / (1 - top_margin - bottom_margin)
 | ||
|     # set new height
 | ||
|     if figure_height > init_height:
 | ||
|         fig.set_figheight(figure_height)
 | ||
| 
 | ||
|     # set plot title
 | ||
|     plt.title(plot_title, fontsize=14)
 | ||
|     # set axis titles
 | ||
|     # plt.xlabel('classes')
 | ||
|     plt.xlabel(x_label, fontsize='large')
 | ||
|     # adjust size of window
 | ||
|     fig.tight_layout()
 | ||
|     # save the plot
 | ||
|     fig.savefig(output_path)
 | ||
|     # show image
 | ||
|     if to_show:
 | ||
|         plt.show()
 | ||
|     # close the plot
 | ||
|     plt.close()
 | ||
| 
 | ||
| def get_map(MINOVERLAP, draw_plot, score_threhold=0.5, path = './map_out'):
 | ||
|     GT_PATH             = os.path.join(path, 'ground-truth')
 | ||
|     DR_PATH             = os.path.join(path, 'detection-results')
 | ||
|     IMG_PATH            = os.path.join(path, 'images-optional')
 | ||
|     TEMP_FILES_PATH     = os.path.join(path, '.temp_files')
 | ||
|     RESULTS_FILES_PATH  = os.path.join(path, 'results')
 | ||
| 
 | ||
|     show_animation = True
 | ||
|     if os.path.exists(IMG_PATH): 
 | ||
|         for dirpath, dirnames, files in os.walk(IMG_PATH):
 | ||
|             if not files:
 | ||
|                 show_animation = False
 | ||
|     else:
 | ||
|         show_animation = False
 | ||
| 
 | ||
|     if not os.path.exists(TEMP_FILES_PATH):
 | ||
|         os.makedirs(TEMP_FILES_PATH)
 | ||
|         
 | ||
|     if os.path.exists(RESULTS_FILES_PATH):
 | ||
|         shutil.rmtree(RESULTS_FILES_PATH)
 | ||
|     else:
 | ||
|         os.makedirs(RESULTS_FILES_PATH)
 | ||
|     if draw_plot:
 | ||
|         try:
 | ||
|             matplotlib.use('TkAgg')
 | ||
|         except:
 | ||
|             pass
 | ||
|         os.makedirs(os.path.join(RESULTS_FILES_PATH, "AP"))
 | ||
|         os.makedirs(os.path.join(RESULTS_FILES_PATH, "F1"))
 | ||
|         os.makedirs(os.path.join(RESULTS_FILES_PATH, "Recall"))
 | ||
|         os.makedirs(os.path.join(RESULTS_FILES_PATH, "Precision"))
 | ||
|     if show_animation:
 | ||
|         os.makedirs(os.path.join(RESULTS_FILES_PATH, "images", "detections_one_by_one"))
 | ||
| 
 | ||
|     ground_truth_files_list = glob.glob(GT_PATH + '/*.txt')
 | ||
|     if len(ground_truth_files_list) == 0:
 | ||
|         error("Error: No ground-truth files found!")
 | ||
|     ground_truth_files_list.sort()
 | ||
|     gt_counter_per_class     = {}
 | ||
|     counter_images_per_class = {}
 | ||
| 
 | ||
|     for txt_file in ground_truth_files_list:
 | ||
|         file_id     = txt_file.split(".txt", 1)[0]
 | ||
|         file_id     = os.path.basename(os.path.normpath(file_id))
 | ||
|         temp_path   = os.path.join(DR_PATH, (file_id + ".txt"))
 | ||
|         if not os.path.exists(temp_path):
 | ||
|             error_msg = "Error. File not found: {}\n".format(temp_path)
 | ||
|             error(error_msg)
 | ||
|         lines_list      = file_lines_to_list(txt_file)
 | ||
|         bounding_boxes  = []
 | ||
|         is_difficult    = False
 | ||
|         already_seen_classes = []
 | ||
|         for line in lines_list:
 | ||
|             try:
 | ||
|                 if "difficult" in line:
 | ||
|                     class_name, left, top, right, bottom, _difficult = line.split()
 | ||
|                     is_difficult = True
 | ||
|                 else:
 | ||
|                     class_name, left, top, right, bottom = line.split()
 | ||
|             except:
 | ||
|                 if "difficult" in line:
 | ||
|                     line_split  = line.split()
 | ||
|                     _difficult  = line_split[-1]
 | ||
|                     bottom      = line_split[-2]
 | ||
|                     right       = line_split[-3]
 | ||
|                     top         = line_split[-4]
 | ||
|                     left        = line_split[-5]
 | ||
|                     class_name  = ""
 | ||
|                     for name in line_split[:-5]:
 | ||
|                         class_name += name + " "
 | ||
|                     class_name  = class_name[:-1]
 | ||
|                     is_difficult = True
 | ||
|                 else:
 | ||
|                     line_split  = line.split()
 | ||
|                     bottom      = line_split[-1]
 | ||
|                     right       = line_split[-2]
 | ||
|                     top         = line_split[-3]
 | ||
|                     left        = line_split[-4]
 | ||
|                     class_name  = ""
 | ||
|                     for name in line_split[:-4]:
 | ||
|                         class_name += name + " "
 | ||
|                     class_name = class_name[:-1]
 | ||
| 
 | ||
|             bbox = left + " " + top + " " + right + " " + bottom
 | ||
|             if is_difficult:
 | ||
|                 bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False, "difficult":True})
 | ||
|                 is_difficult = False
 | ||
|             else:
 | ||
|                 bounding_boxes.append({"class_name":class_name, "bbox":bbox, "used":False})
 | ||
|                 if class_name in gt_counter_per_class:
 | ||
|                     gt_counter_per_class[class_name] += 1
 | ||
|                 else:
 | ||
|                     gt_counter_per_class[class_name] = 1
 | ||
| 
 | ||
|                 if class_name not in already_seen_classes:
 | ||
|                     if class_name in counter_images_per_class:
 | ||
|                         counter_images_per_class[class_name] += 1
 | ||
|                     else:
 | ||
|                         counter_images_per_class[class_name] = 1
 | ||
|                     already_seen_classes.append(class_name)
 | ||
| 
 | ||
|         with open(TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json", 'w') as outfile:
 | ||
|             json.dump(bounding_boxes, outfile)
 | ||
| 
 | ||
|     gt_classes  = list(gt_counter_per_class.keys())
 | ||
|     gt_classes  = sorted(gt_classes)
 | ||
|     n_classes   = len(gt_classes)
 | ||
| 
 | ||
|     dr_files_list = glob.glob(DR_PATH + '/*.txt')
 | ||
|     dr_files_list.sort()
 | ||
|     for class_index, class_name in enumerate(gt_classes):
 | ||
|         bounding_boxes = []
 | ||
|         for txt_file in dr_files_list:
 | ||
|             file_id = txt_file.split(".txt",1)[0]
 | ||
|             file_id = os.path.basename(os.path.normpath(file_id))
 | ||
|             temp_path = os.path.join(GT_PATH, (file_id + ".txt"))
 | ||
|             if class_index == 0:
 | ||
|                 if not os.path.exists(temp_path):
 | ||
|                     error_msg = "Error. File not found: {}\n".format(temp_path)
 | ||
|                     error(error_msg)
 | ||
|             lines = file_lines_to_list(txt_file)
 | ||
|             for line in lines:
 | ||
|                 try:
 | ||
|                     tmp_class_name, confidence, left, top, right, bottom = line.split()
 | ||
|                 except:
 | ||
|                     line_split      = line.split()
 | ||
|                     bottom          = line_split[-1]
 | ||
|                     right           = line_split[-2]
 | ||
|                     top             = line_split[-3]
 | ||
|                     left            = line_split[-4]
 | ||
|                     confidence      = line_split[-5]
 | ||
|                     tmp_class_name  = ""
 | ||
|                     for name in line_split[:-5]:
 | ||
|                         tmp_class_name += name + " "
 | ||
|                     tmp_class_name  = tmp_class_name[:-1]
 | ||
| 
 | ||
|                 if tmp_class_name == class_name:
 | ||
|                     bbox = left + " " + top + " " + right + " " +bottom
 | ||
|                     bounding_boxes.append({"confidence":confidence, "file_id":file_id, "bbox":bbox})
 | ||
| 
 | ||
|         bounding_boxes.sort(key=lambda x:float(x['confidence']), reverse=True)
 | ||
|         with open(TEMP_FILES_PATH + "/" + class_name + "_dr.json", 'w') as outfile:
 | ||
|             json.dump(bounding_boxes, outfile)
 | ||
| 
 | ||
|     sum_AP = 0.0
 | ||
|     ap_dictionary = {}
 | ||
|     lamr_dictionary = {}
 | ||
|     with open(RESULTS_FILES_PATH + "/results.txt", 'w') as results_file:
 | ||
|         results_file.write("# AP and precision/recall per class\n")
 | ||
|         count_true_positives = {}
 | ||
| 
 | ||
|         for class_index, class_name in enumerate(gt_classes):
 | ||
|             count_true_positives[class_name] = 0
 | ||
|             dr_file = TEMP_FILES_PATH + "/" + class_name + "_dr.json"
 | ||
|             dr_data = json.load(open(dr_file))
 | ||
| 
 | ||
|             nd          = len(dr_data)
 | ||
|             tp          = [0] * nd
 | ||
|             fp          = [0] * nd
 | ||
|             score       = [0] * nd
 | ||
|             score_threhold_idx = 0
 | ||
|             for idx, detection in enumerate(dr_data):
 | ||
|                 file_id     = detection["file_id"]
 | ||
|                 score[idx]  = float(detection["confidence"])
 | ||
|                 if score[idx] >= score_threhold:
 | ||
|                     score_threhold_idx = idx
 | ||
| 
 | ||
|                 if show_animation:
 | ||
|                     ground_truth_img = glob.glob1(IMG_PATH, file_id + ".*")
 | ||
|                     if len(ground_truth_img) == 0:
 | ||
|                         error("Error. Image not found with id: " + file_id)
 | ||
|                     elif len(ground_truth_img) > 1:
 | ||
|                         error("Error. Multiple image with id: " + file_id)
 | ||
|                     else:
 | ||
|                         img = cv2.imread(IMG_PATH + "/" + ground_truth_img[0])
 | ||
|                         img_cumulative_path = RESULTS_FILES_PATH + "/images/" + ground_truth_img[0]
 | ||
|                         if os.path.isfile(img_cumulative_path):
 | ||
|                             img_cumulative = cv2.imread(img_cumulative_path)
 | ||
|                         else:
 | ||
|                             img_cumulative = img.copy()
 | ||
|                         bottom_border = 60
 | ||
|                         BLACK = [0, 0, 0]
 | ||
|                         img = cv2.copyMakeBorder(img, 0, bottom_border, 0, 0, cv2.BORDER_CONSTANT, value=BLACK)
 | ||
| 
 | ||
|                 gt_file             = TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
 | ||
|                 ground_truth_data   = json.load(open(gt_file))
 | ||
|                 ovmax       = -1
 | ||
|                 gt_match    = -1
 | ||
|                 bb          = [float(x) for x in detection["bbox"].split()]
 | ||
|                 for obj in ground_truth_data:
 | ||
|                     if obj["class_name"] == class_name:
 | ||
|                         bbgt    = [ float(x) for x in obj["bbox"].split() ]
 | ||
|                         bi      = [max(bb[0],bbgt[0]), max(bb[1],bbgt[1]), min(bb[2],bbgt[2]), min(bb[3],bbgt[3])]
 | ||
|                         iw      = bi[2] - bi[0] + 1
 | ||
|                         ih      = bi[3] - bi[1] + 1
 | ||
|                         if iw > 0 and ih > 0:
 | ||
|                             ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + (bbgt[2] - bbgt[0]
 | ||
|                                             + 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
 | ||
|                             ov = iw * ih / ua
 | ||
|                             if ov > ovmax:
 | ||
|                                 ovmax = ov
 | ||
|                                 gt_match = obj
 | ||
| 
 | ||
|                 if show_animation:
 | ||
|                     status = "NO MATCH FOUND!" 
 | ||
|                     
 | ||
|                 min_overlap = MINOVERLAP
 | ||
|                 if ovmax >= min_overlap:
 | ||
|                     if "difficult" not in gt_match:
 | ||
|                         if not bool(gt_match["used"]):
 | ||
|                             tp[idx] = 1
 | ||
|                             gt_match["used"] = True
 | ||
|                             count_true_positives[class_name] += 1
 | ||
|                             with open(gt_file, 'w') as f:
 | ||
|                                     f.write(json.dumps(ground_truth_data))
 | ||
|                             if show_animation:
 | ||
|                                 status = "MATCH!"
 | ||
|                         else:
 | ||
|                             fp[idx] = 1
 | ||
|                             if show_animation:
 | ||
|                                 status = "REPEATED MATCH!"
 | ||
|                 else:
 | ||
|                     fp[idx] = 1
 | ||
|                     if ovmax > 0:
 | ||
|                         status = "INSUFFICIENT OVERLAP"
 | ||
| 
 | ||
|                 """
 | ||
|                 Draw image to show animation
 | ||
|                 """
 | ||
|                 if show_animation:
 | ||
|                     height, widht = img.shape[:2]
 | ||
|                     white           = (255,255,255)
 | ||
|                     light_blue      = (255,200,100)
 | ||
|                     green           = (0,255,0)
 | ||
|                     light_red       = (30,30,255)
 | ||
|                     margin          = 10
 | ||
|                     # 1nd line
 | ||
|                     v_pos           = int(height - margin - (bottom_border / 2.0))
 | ||
|                     text            = "Image: " + ground_truth_img[0] + " "
 | ||
|                     img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
 | ||
|                     text            = "Class [" + str(class_index) + "/" + str(n_classes) + "]: " + class_name + " "
 | ||
|                     img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), light_blue, line_width)
 | ||
|                     if ovmax != -1:
 | ||
|                         color       = light_red
 | ||
|                         if status   == "INSUFFICIENT OVERLAP":
 | ||
|                             text    = "IoU: {0:.2f}% ".format(ovmax*100) + "< {0:.2f}% ".format(min_overlap*100)
 | ||
|                         else:
 | ||
|                             text    = "IoU: {0:.2f}% ".format(ovmax*100) + ">= {0:.2f}% ".format(min_overlap*100)
 | ||
|                             color   = green
 | ||
|                         img, _ = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
 | ||
|                     # 2nd line
 | ||
|                     v_pos           += int(bottom_border / 2.0)
 | ||
|                     rank_pos        = str(idx+1)
 | ||
|                     text            = "Detection #rank: " + rank_pos + " confidence: {0:.2f}% ".format(float(detection["confidence"])*100)
 | ||
|                     img, line_width = draw_text_in_image(img, text, (margin, v_pos), white, 0)
 | ||
|                     color           = light_red
 | ||
|                     if status == "MATCH!":
 | ||
|                         color = green
 | ||
|                     text            = "Result: " + status + " "
 | ||
|                     img, line_width = draw_text_in_image(img, text, (margin + line_width, v_pos), color, line_width)
 | ||
| 
 | ||
|                     font = cv2.FONT_HERSHEY_SIMPLEX
 | ||
|                     if ovmax > 0: 
 | ||
|                         bbgt = [ int(round(float(x))) for x in gt_match["bbox"].split() ]
 | ||
|                         cv2.rectangle(img,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
 | ||
|                         cv2.rectangle(img_cumulative,(bbgt[0],bbgt[1]),(bbgt[2],bbgt[3]),light_blue,2)
 | ||
|                         cv2.putText(img_cumulative, class_name, (bbgt[0],bbgt[1] - 5), font, 0.6, light_blue, 1, cv2.LINE_AA)
 | ||
|                     bb = [int(i) for i in bb]
 | ||
|                     cv2.rectangle(img,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
 | ||
|                     cv2.rectangle(img_cumulative,(bb[0],bb[1]),(bb[2],bb[3]),color,2)
 | ||
|                     cv2.putText(img_cumulative, class_name, (bb[0],bb[1] - 5), font, 0.6, color, 1, cv2.LINE_AA)
 | ||
| 
 | ||
|                     cv2.imshow("Animation", img)
 | ||
|                     cv2.waitKey(20) 
 | ||
|                     output_img_path = RESULTS_FILES_PATH + "/images/detections_one_by_one/" + class_name + "_detection" + str(idx) + ".jpg"
 | ||
|                     cv2.imwrite(output_img_path, img)
 | ||
|                     cv2.imwrite(img_cumulative_path, img_cumulative)
 | ||
| 
 | ||
|             cumsum = 0
 | ||
|             for idx, val in enumerate(fp):
 | ||
|                 fp[idx] += cumsum
 | ||
|                 cumsum += val
 | ||
|                 
 | ||
|             cumsum = 0
 | ||
|             for idx, val in enumerate(tp):
 | ||
|                 tp[idx] += cumsum
 | ||
|                 cumsum += val
 | ||
| 
 | ||
|             rec = tp[:]
 | ||
|             for idx, val in enumerate(tp):
 | ||
|                 rec[idx] = float(tp[idx]) / np.maximum(gt_counter_per_class[class_name], 1)
 | ||
| 
 | ||
|             prec = tp[:]
 | ||
|             for idx, val in enumerate(tp):
 | ||
|                 prec[idx] = float(tp[idx]) / np.maximum((fp[idx] + tp[idx]), 1)
 | ||
| 
 | ||
|             ap, mrec, mprec = voc_ap(rec[:], prec[:])
 | ||
|             F1  = np.array(rec)*np.array(prec)*2 / np.where((np.array(prec)+np.array(rec))==0, 1, (np.array(prec)+np.array(rec)))
 | ||
| 
 | ||
|             sum_AP  += ap
 | ||
|             text    = "{0:.2f}%".format(ap*100) + " = " + class_name + " AP " #class_name + " AP = {0:.2f}%".format(ap*100)
 | ||
| 
 | ||
|             if len(prec)>0:
 | ||
|                 F1_text         = "{0:.2f}".format(F1[score_threhold_idx]) + " = " + class_name + " F1 "
 | ||
|                 Recall_text     = "{0:.2f}%".format(rec[score_threhold_idx]*100) + " = " + class_name + " Recall "
 | ||
|                 Precision_text  = "{0:.2f}%".format(prec[score_threhold_idx]*100) + " = " + class_name + " Precision "
 | ||
|             else:
 | ||
|                 F1_text         = "0.00" + " = " + class_name + " F1 " 
 | ||
|                 Recall_text     = "0.00%" + " = " + class_name + " Recall " 
 | ||
|                 Precision_text  = "0.00%" + " = " + class_name + " Precision " 
 | ||
| 
 | ||
|             rounded_prec    = [ '%.2f' % elem for elem in prec ]
 | ||
|             rounded_rec     = [ '%.2f' % elem for elem in rec ]
 | ||
|             results_file.write(text + "\n Precision: " + str(rounded_prec) + "\n Recall :" + str(rounded_rec) + "\n\n")
 | ||
|             
 | ||
|             if len(prec)>0:
 | ||
|                 print(text + "\t||\tscore_threhold=" + str(score_threhold) + " : " + "F1=" + "{0:.2f}".format(F1[score_threhold_idx])\
 | ||
|                     + " ; Recall=" + "{0:.2f}%".format(rec[score_threhold_idx]*100) + " ; Precision=" + "{0:.2f}%".format(prec[score_threhold_idx]*100))
 | ||
|             else:
 | ||
|                 print(text + "\t||\tscore_threhold=" + str(score_threhold) + " : " + "F1=0.00% ; Recall=0.00% ; Precision=0.00%")
 | ||
|             ap_dictionary[class_name] = ap
 | ||
| 
 | ||
|             n_images = counter_images_per_class[class_name]
 | ||
|             lamr, mr, fppi = log_average_miss_rate(np.array(rec), np.array(fp), n_images)
 | ||
|             lamr_dictionary[class_name] = lamr
 | ||
| 
 | ||
|             if draw_plot:
 | ||
|                 plt.plot(rec, prec, '-o')
 | ||
|                 area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
 | ||
|                 area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
 | ||
|                 plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
 | ||
| 
 | ||
|                 fig = plt.gcf()
 | ||
|                 fig.canvas.set_window_title('AP ' + class_name)
 | ||
| 
 | ||
|                 plt.title('class: ' + text)
 | ||
|                 plt.xlabel('Recall')
 | ||
|                 plt.ylabel('Precision')
 | ||
|                 axes = plt.gca()
 | ||
|                 axes.set_xlim([0.0,1.0])
 | ||
|                 axes.set_ylim([0.0,1.05]) 
 | ||
|                 fig.savefig(RESULTS_FILES_PATH + "/AP/" + class_name + ".png")
 | ||
|                 plt.cla()
 | ||
| 
 | ||
|                 plt.plot(score, F1, "-", color='orangered')
 | ||
|                 plt.title('class: ' + F1_text + "\nscore_threhold=" + str(score_threhold))
 | ||
|                 plt.xlabel('Score_Threhold')
 | ||
|                 plt.ylabel('F1')
 | ||
|                 axes = plt.gca()
 | ||
|                 axes.set_xlim([0.0,1.0])
 | ||
|                 axes.set_ylim([0.0,1.05])
 | ||
|                 fig.savefig(RESULTS_FILES_PATH + "/F1/" + class_name + ".png")
 | ||
|                 plt.cla()
 | ||
| 
 | ||
|                 plt.plot(score, rec, "-H", color='gold')
 | ||
|                 plt.title('class: ' + Recall_text + "\nscore_threhold=" + str(score_threhold))
 | ||
|                 plt.xlabel('Score_Threhold')
 | ||
|                 plt.ylabel('Recall')
 | ||
|                 axes = plt.gca()
 | ||
|                 axes.set_xlim([0.0,1.0])
 | ||
|                 axes.set_ylim([0.0,1.05])
 | ||
|                 fig.savefig(RESULTS_FILES_PATH + "/Recall/" + class_name + ".png")
 | ||
|                 plt.cla()
 | ||
| 
 | ||
|                 plt.plot(score, prec, "-s", color='palevioletred')
 | ||
|                 plt.title('class: ' + Precision_text + "\nscore_threhold=" + str(score_threhold))
 | ||
|                 plt.xlabel('Score_Threhold')
 | ||
|                 plt.ylabel('Precision')
 | ||
|                 axes = plt.gca()
 | ||
|                 axes.set_xlim([0.0,1.0])
 | ||
|                 axes.set_ylim([0.0,1.05])
 | ||
|                 fig.savefig(RESULTS_FILES_PATH + "/Precision/" + class_name + ".png")
 | ||
|                 plt.cla()
 | ||
|                 
 | ||
|         if show_animation:
 | ||
|             cv2.destroyAllWindows()
 | ||
|         if n_classes == 0:
 | ||
|             print("未检测到任何种类,请检查标签信息与get_map.py中的classes_path是否修改。")
 | ||
|             return 0
 | ||
|         results_file.write("\n# mAP of all classes\n")
 | ||
|         mAP     = sum_AP / n_classes
 | ||
|         text    = "mAP = {0:.2f}%".format(mAP*100)
 | ||
|         results_file.write(text + "\n")
 | ||
|         print(text)
 | ||
| 
 | ||
|     shutil.rmtree(TEMP_FILES_PATH)
 | ||
| 
 | ||
|     """
 | ||
|     Count total of detection-results
 | ||
|     """
 | ||
|     det_counter_per_class = {}
 | ||
|     for txt_file in dr_files_list:
 | ||
|         lines_list = file_lines_to_list(txt_file)
 | ||
|         for line in lines_list:
 | ||
|             class_name = line.split()[0]
 | ||
|             if class_name in det_counter_per_class:
 | ||
|                 det_counter_per_class[class_name] += 1
 | ||
|             else:
 | ||
|                 det_counter_per_class[class_name] = 1
 | ||
|     dr_classes = list(det_counter_per_class.keys())
 | ||
| 
 | ||
|     """
 | ||
|     Write number of ground-truth objects per class to results.txt
 | ||
|     """
 | ||
|     with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
 | ||
|         results_file.write("\n# Number of ground-truth objects per class\n")
 | ||
|         for class_name in sorted(gt_counter_per_class):
 | ||
|             results_file.write(class_name + ": " + str(gt_counter_per_class[class_name]) + "\n")
 | ||
| 
 | ||
|     """
 | ||
|     Finish counting true positives
 | ||
|     """
 | ||
|     for class_name in dr_classes:
 | ||
|         if class_name not in gt_classes:
 | ||
|             count_true_positives[class_name] = 0
 | ||
| 
 | ||
|     """
 | ||
|     Write number of detected objects per class to results.txt
 | ||
|     """
 | ||
|     with open(RESULTS_FILES_PATH + "/results.txt", 'a') as results_file:
 | ||
|         results_file.write("\n# Number of detected objects per class\n")
 | ||
|         for class_name in sorted(dr_classes):
 | ||
|             n_det = det_counter_per_class[class_name]
 | ||
|             text = class_name + ": " + str(n_det)
 | ||
|             text += " (tp:" + str(count_true_positives[class_name]) + ""
 | ||
|             text += ", fp:" + str(n_det - count_true_positives[class_name]) + ")\n"
 | ||
|             results_file.write(text)
 | ||
| 
 | ||
|     """
 | ||
|     Plot the total number of occurences of each class in the ground-truth
 | ||
|     """
 | ||
|     if draw_plot:
 | ||
|         window_title = "ground-truth-info"
 | ||
|         plot_title = "ground-truth\n"
 | ||
|         plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
 | ||
|         x_label = "Number of objects per class"
 | ||
|         output_path = RESULTS_FILES_PATH + "/ground-truth-info.png"
 | ||
|         to_show = False
 | ||
|         plot_color = 'forestgreen'
 | ||
|         draw_plot_func(
 | ||
|             gt_counter_per_class,
 | ||
|             n_classes,
 | ||
|             window_title,
 | ||
|             plot_title,
 | ||
|             x_label,
 | ||
|             output_path,
 | ||
|             to_show,
 | ||
|             plot_color,
 | ||
|             '',
 | ||
|             )
 | ||
| 
 | ||
|     # """
 | ||
|     # Plot the total number of occurences of each class in the "detection-results" folder
 | ||
|     # """
 | ||
|     # if draw_plot:
 | ||
|     #     window_title = "detection-results-info"
 | ||
|     #     # Plot title
 | ||
|     #     plot_title = "detection-results\n"
 | ||
|     #     plot_title += "(" + str(len(dr_files_list)) + " files and "
 | ||
|     #     count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
 | ||
|     #     plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
 | ||
|     #     # end Plot title
 | ||
|     #     x_label = "Number of objects per class"
 | ||
|     #     output_path = RESULTS_FILES_PATH + "/detection-results-info.png"
 | ||
|     #     to_show = False
 | ||
|     #     plot_color = 'forestgreen'
 | ||
|     #     true_p_bar = count_true_positives
 | ||
|     #     draw_plot_func(
 | ||
|     #         det_counter_per_class,
 | ||
|     #         len(det_counter_per_class),
 | ||
|     #         window_title,
 | ||
|     #         plot_title,
 | ||
|     #         x_label,
 | ||
|     #         output_path,
 | ||
|     #         to_show,
 | ||
|     #         plot_color,
 | ||
|     #         true_p_bar
 | ||
|     #         )
 | ||
| 
 | ||
|     """
 | ||
|     Draw log-average miss rate plot (Show lamr of all classes in decreasing order)
 | ||
|     """
 | ||
|     if draw_plot:
 | ||
|         window_title = "lamr"
 | ||
|         plot_title = "log-average miss rate"
 | ||
|         x_label = "log-average miss rate"
 | ||
|         output_path = RESULTS_FILES_PATH + "/lamr.png"
 | ||
|         to_show = False
 | ||
|         plot_color = 'royalblue'
 | ||
|         draw_plot_func(
 | ||
|             lamr_dictionary,
 | ||
|             n_classes,
 | ||
|             window_title,
 | ||
|             plot_title,
 | ||
|             x_label,
 | ||
|             output_path,
 | ||
|             to_show,
 | ||
|             plot_color,
 | ||
|             ""
 | ||
|             )
 | ||
| 
 | ||
|     """
 | ||
|     Draw mAP plot (Show AP's of all classes in decreasing order)
 | ||
|     """
 | ||
|     if draw_plot:
 | ||
|         window_title = "mAP"
 | ||
|         plot_title = "mAP = {0:.2f}%".format(mAP*100)
 | ||
|         x_label = "Average Precision"
 | ||
|         output_path = RESULTS_FILES_PATH + "/mAP.png"
 | ||
|         to_show = True
 | ||
|         plot_color = 'royalblue'
 | ||
|         draw_plot_func(
 | ||
|             ap_dictionary,
 | ||
|             n_classes,
 | ||
|             window_title,
 | ||
|             plot_title,
 | ||
|             x_label,
 | ||
|             output_path,
 | ||
|             to_show,
 | ||
|             plot_color,
 | ||
|             ""
 | ||
|             )
 | ||
|     return mAP
 | ||
| 
 | ||
| def preprocess_gt(gt_path, class_names):
 | ||
|     image_ids   = os.listdir(gt_path)
 | ||
|     results = {}
 | ||
| 
 | ||
|     images = []
 | ||
|     bboxes = []
 | ||
|     for i, image_id in enumerate(image_ids):
 | ||
|         lines_list      = file_lines_to_list(os.path.join(gt_path, image_id))
 | ||
|         boxes_per_image = []
 | ||
|         image           = {}
 | ||
|         image_id        = os.path.splitext(image_id)[0]
 | ||
|         image['file_name'] = image_id + '.jpg'
 | ||
|         image['width']     = 1
 | ||
|         image['height']    = 1
 | ||
|         #-----------------------------------------------------------------#
 | ||
|         #   感谢 多学学英语吧 的提醒
 | ||
|         #   解决了'Results do not correspond to current coco set'问题
 | ||
|         #-----------------------------------------------------------------#
 | ||
|         image['id']        = str(image_id)
 | ||
| 
 | ||
|         for line in lines_list:
 | ||
|             difficult = 0 
 | ||
|             if "difficult" in line:
 | ||
|                 line_split  = line.split()
 | ||
|                 left, top, right, bottom, _difficult = line_split[-5:]
 | ||
|                 class_name  = ""
 | ||
|                 for name in line_split[:-5]:
 | ||
|                     class_name += name + " "
 | ||
|                 class_name  = class_name[:-1]
 | ||
|                 difficult = 1
 | ||
|             else:
 | ||
|                 line_split  = line.split()
 | ||
|                 left, top, right, bottom = line_split[-4:]
 | ||
|                 class_name  = ""
 | ||
|                 for name in line_split[:-4]:
 | ||
|                     class_name += name + " "
 | ||
|                 class_name = class_name[:-1]
 | ||
|             
 | ||
|             left, top, right, bottom = float(left), float(top), float(right), float(bottom)
 | ||
|             if class_name not in class_names:
 | ||
|                 continue
 | ||
|             cls_id  = class_names.index(class_name) + 1
 | ||
|             bbox    = [left, top, right - left, bottom - top, difficult, str(image_id), cls_id, (right - left) * (bottom - top) - 10.0]
 | ||
|             boxes_per_image.append(bbox)
 | ||
|         images.append(image)
 | ||
|         bboxes.extend(boxes_per_image)
 | ||
|     results['images']        = images
 | ||
| 
 | ||
|     categories = []
 | ||
|     for i, cls in enumerate(class_names):
 | ||
|         category = {}
 | ||
|         category['supercategory']   = cls
 | ||
|         category['name']            = cls
 | ||
|         category['id']              = i + 1
 | ||
|         categories.append(category)
 | ||
|     results['categories']   = categories
 | ||
| 
 | ||
|     annotations = []
 | ||
|     for i, box in enumerate(bboxes):
 | ||
|         annotation = {}
 | ||
|         annotation['area']        = box[-1]
 | ||
|         annotation['category_id'] = box[-2]
 | ||
|         annotation['image_id']    = box[-3]
 | ||
|         annotation['iscrowd']     = box[-4]
 | ||
|         annotation['bbox']        = box[:4]
 | ||
|         annotation['id']          = i
 | ||
|         annotations.append(annotation)
 | ||
|     results['annotations'] = annotations
 | ||
|     return results
 | ||
| 
 | ||
| def preprocess_dr(dr_path, class_names):
 | ||
|     image_ids = os.listdir(dr_path)
 | ||
|     results = []
 | ||
|     for image_id in image_ids:
 | ||
|         lines_list      = file_lines_to_list(os.path.join(dr_path, image_id))
 | ||
|         image_id        = os.path.splitext(image_id)[0]
 | ||
|         for line in lines_list:
 | ||
|             line_split  = line.split()
 | ||
|             confidence, left, top, right, bottom = line_split[-5:]
 | ||
|             class_name  = ""
 | ||
|             for name in line_split[:-5]:
 | ||
|                 class_name += name + " "
 | ||
|             class_name  = class_name[:-1]
 | ||
|             left, top, right, bottom = float(left), float(top), float(right), float(bottom)
 | ||
|             result                  = {}
 | ||
|             result["image_id"]      = str(image_id)
 | ||
|             if class_name not in class_names:
 | ||
|                 continue
 | ||
|             result["category_id"]   = class_names.index(class_name) + 1
 | ||
|             result["bbox"]          = [left, top, right - left, bottom - top]
 | ||
|             result["score"]         = float(confidence)
 | ||
|             results.append(result)
 | ||
|     return results
 | ||
|  
 | ||
| def get_coco_map(class_names, path):
 | ||
|     GT_PATH     = os.path.join(path, 'ground-truth')
 | ||
|     DR_PATH     = os.path.join(path, 'detection-results')
 | ||
|     COCO_PATH   = os.path.join(path, 'coco_eval')
 | ||
| 
 | ||
|     if not os.path.exists(COCO_PATH):
 | ||
|         os.makedirs(COCO_PATH)
 | ||
| 
 | ||
|     GT_JSON_PATH = os.path.join(COCO_PATH, 'instances_gt.json')
 | ||
|     DR_JSON_PATH = os.path.join(COCO_PATH, 'instances_dr.json')
 | ||
| 
 | ||
|     with open(GT_JSON_PATH, "w") as f:
 | ||
|         results_gt  = preprocess_gt(GT_PATH, class_names)
 | ||
|         json.dump(results_gt, f, indent=4)
 | ||
| 
 | ||
|     with open(DR_JSON_PATH, "w") as f:
 | ||
|         results_dr  = preprocess_dr(DR_PATH, class_names)
 | ||
|         json.dump(results_dr, f, indent=4)
 | ||
|         if len(results_dr) == 0:
 | ||
|             print("未检测到任何目标。")
 | ||
|             return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 | ||
| 
 | ||
|     cocoGt      = COCO(GT_JSON_PATH)
 | ||
|     cocoDt      = cocoGt.loadRes(DR_JSON_PATH)
 | ||
|     cocoEval    = COCOeval(cocoGt, cocoDt, 'bbox') 
 | ||
|     cocoEval.evaluate()
 | ||
|     cocoEval.accumulate()
 | ||
|     cocoEval.summarize()
 | ||
| 
 | ||
|     return cocoEval.stats |