117 lines
4.4 KiB
Python
117 lines
4.4 KiB
Python
import random
|
||
|
||
import numpy as np
|
||
import torch
|
||
from PIL import Image
|
||
|
||
|
||
#---------------------------------------------------------#
|
||
# 将图像转换成RGB图像,防止灰度图在预测时报错。
|
||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||
#---------------------------------------------------------#
|
||
def cvtColor(image):
|
||
if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
|
||
return image
|
||
else:
|
||
image = image.convert('RGB')
|
||
return image
|
||
|
||
#---------------------------------------------------#
|
||
# 对输入图像进行resize
|
||
#---------------------------------------------------#
|
||
def resize_image(image, size, letterbox_image):
|
||
iw, ih = image.size
|
||
w, h = size
|
||
if letterbox_image:
|
||
scale = min(w/iw, h/ih)
|
||
nw = int(iw*scale)
|
||
nh = int(ih*scale)
|
||
|
||
image = image.resize((nw,nh), Image.BICUBIC)
|
||
new_image = Image.new('RGB', size, (128,128,128))
|
||
new_image.paste(image, ((w-nw)//2, (h-nh)//2))
|
||
else:
|
||
new_image = image.resize((w, h), Image.BICUBIC)
|
||
return new_image
|
||
|
||
#---------------------------------------------------#
|
||
# 获得类
|
||
#---------------------------------------------------#
|
||
def get_classes(classes_path):
|
||
with open(classes_path, encoding='utf-8') as f:
|
||
class_names = f.readlines()
|
||
class_names = [c.strip() for c in class_names]
|
||
return class_names, len(class_names)
|
||
|
||
#---------------------------------------------------#
|
||
# 获得先验框
|
||
#---------------------------------------------------#
|
||
def get_anchors(anchors_path):
|
||
'''loads the anchors from a file'''
|
||
with open(anchors_path, encoding='utf-8') as f:
|
||
anchors = f.readline()
|
||
anchors = [float(x) for x in anchors.split(',')]
|
||
anchors = np.array(anchors).reshape(-1, 2)
|
||
return anchors, len(anchors)
|
||
|
||
#---------------------------------------------------#
|
||
# 获得学习率
|
||
#---------------------------------------------------#
|
||
def get_lr(optimizer):
|
||
for param_group in optimizer.param_groups:
|
||
return param_group['lr']
|
||
|
||
#---------------------------------------------------#
|
||
# 设置种子
|
||
#---------------------------------------------------#
|
||
def seed_everything(seed=11):
|
||
random.seed(seed)
|
||
np.random.seed(seed)
|
||
torch.manual_seed(seed)
|
||
torch.cuda.manual_seed(seed)
|
||
torch.cuda.manual_seed_all(seed)
|
||
torch.backends.cudnn.deterministic = True
|
||
torch.backends.cudnn.benchmark = False
|
||
|
||
#---------------------------------------------------#
|
||
# 设置Dataloader的种子
|
||
#---------------------------------------------------#
|
||
def worker_init_fn(worker_id, rank, seed):
|
||
worker_seed = rank + seed
|
||
random.seed(worker_seed)
|
||
np.random.seed(worker_seed)
|
||
torch.manual_seed(worker_seed)
|
||
|
||
def preprocess_input(image):
|
||
image /= 255.0
|
||
return image
|
||
|
||
def show_config(**kwargs):
|
||
print('Configurations:')
|
||
print('-' * 70)
|
||
print('|%25s | %40s|' % ('keys', 'values'))
|
||
print('-' * 70)
|
||
for key, value in kwargs.items():
|
||
print('|%25s | %40s|' % (str(key), str(value)))
|
||
print('-' * 70)
|
||
|
||
def download_weights(backbone, phi, model_dir="./model_data"):
|
||
import os
|
||
from torch.hub import load_state_dict_from_url
|
||
if backbone == "cspdarknet":
|
||
backbone = backbone + "_" + phi
|
||
|
||
download_urls = {
|
||
"convnext_tiny" : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/convnext_tiny_1k_224_ema_no_jit.pth",
|
||
"convnext_small" : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/convnext_small_1k_224_ema_no_jit.pth",
|
||
"cspdarknet_s" : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth',
|
||
'cspdarknet_m' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth',
|
||
'cspdarknet_l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth',
|
||
'cspdarknet_x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth',
|
||
'swin_transfomer_tiny' : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/swin_tiny_patch4_window7.pth",
|
||
}
|
||
url = download_urls[backbone]
|
||
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
load_state_dict_from_url(url, model_dir) |