178 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | ||
| import torch.nn as nn
 | ||
| 
 | ||
| 
 | ||
| class SiLU(nn.Module):
 | ||
|     @staticmethod
 | ||
|     def forward(x):
 | ||
|         return x * torch.sigmoid(x)
 | ||
| 
 | ||
| def autopad(k, p=None):
 | ||
|     if p is None:
 | ||
|         p = k // 2 if isinstance(k, int) else [x // 2 for x in k] 
 | ||
|     return p
 | ||
| 
 | ||
| class Focus(nn.Module):
 | ||
|     def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
 | ||
|         super(Focus, self).__init__()
 | ||
|         self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         # 320, 320, 12 => 320, 320, 64
 | ||
|         return self.conv(
 | ||
|             # 640, 640, 3 => 320, 320, 12
 | ||
|             torch.cat(
 | ||
|                 [
 | ||
|                     x[..., ::2, ::2], 
 | ||
|                     x[..., 1::2, ::2], 
 | ||
|                     x[..., ::2, 1::2], 
 | ||
|                     x[..., 1::2, 1::2]
 | ||
|                 ], 1
 | ||
|             )
 | ||
|         )
 | ||
| 
 | ||
| class Conv(nn.Module):
 | ||
|     def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
 | ||
|         super(Conv, self).__init__()
 | ||
|         self.conv   = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
 | ||
|         self.bn     = nn.BatchNorm2d(c2, eps=0.001, momentum=0.03)
 | ||
|         self.act    = SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         return self.act(self.bn(self.conv(x)))
 | ||
| 
 | ||
|     def fuseforward(self, x):
 | ||
|         return self.act(self.conv(x))
 | ||
| 
 | ||
| class Bottleneck(nn.Module):
 | ||
|     # Standard bottleneck
 | ||
|     def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
 | ||
|         super(Bottleneck, self).__init__()
 | ||
|         c_ = int(c2 * e)  # hidden channels
 | ||
|         self.cv1 = Conv(c1, c_, 1, 1)
 | ||
|         self.cv2 = Conv(c_, c2, 3, 1, g=g)
 | ||
|         self.add = shortcut and c1 == c2
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
 | ||
| 
 | ||
| class C3(nn.Module):
 | ||
|     # CSP Bottleneck with 3 convolutions
 | ||
|     def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
 | ||
|         super(C3, self).__init__()
 | ||
|         c_ = int(c2 * e)  # hidden channels
 | ||
|         self.cv1 = Conv(c1, c_, 1, 1)
 | ||
|         self.cv2 = Conv(c1, c_, 1, 1)
 | ||
|         self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
 | ||
|         self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
 | ||
|         # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         return self.cv3(torch.cat(
 | ||
|             (
 | ||
|                 self.m(self.cv1(x)), 
 | ||
|                 self.cv2(x)
 | ||
|             )
 | ||
|             , dim=1))
 | ||
| 
 | ||
| class SPP(nn.Module):
 | ||
|     # Spatial pyramid pooling layer used in YOLOv3-SPP
 | ||
|     def __init__(self, c1, c2, k=(5, 9, 13)):
 | ||
|         super(SPP, self).__init__()
 | ||
|         c_ = c1 // 2  # hidden channels
 | ||
|         self.cv1 = Conv(c1, c_, 1, 1)
 | ||
|         self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
 | ||
|         self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         x = self.cv1(x)
 | ||
|         return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
 | ||
|         
 | ||
| class CSPDarknet(nn.Module):
 | ||
|     def __init__(self, base_channels, base_depth, phi, pretrained):
 | ||
|         super().__init__()
 | ||
|         #-----------------------------------------------#
 | ||
|         #   输入图片是640, 640, 3
 | ||
|         #   初始的基本通道base_channels是64
 | ||
|         #-----------------------------------------------#
 | ||
| 
 | ||
|         #-----------------------------------------------#
 | ||
|         #   利用focus网络结构进行特征提取
 | ||
|         #   640, 640, 3 -> 320, 320, 12 -> 320, 320, 64
 | ||
|         #-----------------------------------------------#
 | ||
|         self.stem       = Focus(3, base_channels, k=3)
 | ||
|         
 | ||
|         #-----------------------------------------------#
 | ||
|         #   完成卷积之后,320, 320, 64 -> 160, 160, 128
 | ||
|         #   完成CSPlayer之后,160, 160, 128 -> 160, 160, 128
 | ||
|         #-----------------------------------------------#
 | ||
|         self.dark2 = nn.Sequential(
 | ||
|             # 320, 320, 64 -> 160, 160, 128
 | ||
|             Conv(base_channels, base_channels * 2, 3, 2),
 | ||
|             # 160, 160, 128 -> 160, 160, 128
 | ||
|             C3(base_channels * 2, base_channels * 2, base_depth),
 | ||
|         )
 | ||
|         
 | ||
|         #-----------------------------------------------#
 | ||
|         #   完成卷积之后,160, 160, 128 -> 80, 80, 256
 | ||
|         #   完成CSPlayer之后,80, 80, 256 -> 80, 80, 256
 | ||
|         #                   在这里引出有效特征层80, 80, 256
 | ||
|         #                   进行加强特征提取网络FPN的构建
 | ||
|         #-----------------------------------------------#
 | ||
|         self.dark3 = nn.Sequential(
 | ||
|             Conv(base_channels * 2, base_channels * 4, 3, 2),
 | ||
|             C3(base_channels * 4, base_channels * 4, base_depth * 3),
 | ||
|         )
 | ||
| 
 | ||
|         #-----------------------------------------------#
 | ||
|         #   完成卷积之后,80, 80, 256 -> 40, 40, 512
 | ||
|         #   完成CSPlayer之后,40, 40, 512 -> 40, 40, 512
 | ||
|         #                   在这里引出有效特征层40, 40, 512
 | ||
|         #                   进行加强特征提取网络FPN的构建
 | ||
|         #-----------------------------------------------#
 | ||
|         self.dark4 = nn.Sequential(
 | ||
|             Conv(base_channels * 4, base_channels * 8, 3, 2),
 | ||
|             C3(base_channels * 8, base_channels * 8, base_depth * 3),
 | ||
|         )
 | ||
|         
 | ||
|         #-----------------------------------------------#
 | ||
|         #   完成卷积之后,40, 40, 512 -> 20, 20, 1024
 | ||
|         #   完成SPP之后,20, 20, 1024 -> 20, 20, 1024
 | ||
|         #   完成CSPlayer之后,20, 20, 1024 -> 20, 20, 1024
 | ||
|         #-----------------------------------------------#
 | ||
|         self.dark5 = nn.Sequential(
 | ||
|             Conv(base_channels * 8, base_channels * 16, 3, 2),
 | ||
|             SPP(base_channels * 16, base_channels * 16),
 | ||
|             C3(base_channels * 16, base_channels * 16, base_depth, shortcut=False),
 | ||
|         )
 | ||
|         if pretrained:
 | ||
|             url = {
 | ||
|                 's' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_s_backbone.pth',
 | ||
|                 'm' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_m_backbone.pth',
 | ||
|                 'l' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_l_backbone.pth',
 | ||
|                 'x' : 'https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/cspdarknet_x_backbone.pth',
 | ||
|             }[phi]
 | ||
|             checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
 | ||
|             self.load_state_dict(checkpoint, strict=False)
 | ||
|             print("Load weights from ", url.split('/')[-1])
 | ||
|             
 | ||
|     def forward(self, x):
 | ||
|         x = self.stem(x)
 | ||
|         x = self.dark2(x)
 | ||
|         #-----------------------------------------------#
 | ||
|         #   dark3的输出为80, 80, 256,是一个有效特征层
 | ||
|         #-----------------------------------------------#
 | ||
|         x = self.dark3(x)
 | ||
|         feat1 = x
 | ||
|         #-----------------------------------------------#
 | ||
|         #   dark4的输出为40, 40, 512,是一个有效特征层
 | ||
|         #-----------------------------------------------#
 | ||
|         x = self.dark4(x)
 | ||
|         feat2 = x
 | ||
|         #-----------------------------------------------#
 | ||
|         #   dark5的输出为20, 20, 1024,是一个有效特征层
 | ||
|         #-----------------------------------------------#
 | ||
|         x = self.dark5(x)
 | ||
|         feat3 = x
 | ||
|         return feat1, feat2, feat3
 |