注释结构

This commit is contained in:
2023-11-23 00:08:20 +08:00
parent 7e23f6a7b3
commit 45d2475adb
9 changed files with 432 additions and 388 deletions

12
.gitignore vendored
View File

@@ -1,7 +1,7 @@
Data/ImageData/*
__pycache__
.vscode
ModelLog/*
Data/ImageData/*
__pycache__
.vscode
ModelLog/*
!*.md

View File

@@ -1,5 +1,5 @@
{
"python.analysis.extraPaths": [
"./Data"
]
{
"python.analysis.extraPaths": [
"./Data"
]
}

View File

@@ -1,39 +1,39 @@
'''
@作者:你遇了我321640253@qq.com
@文件:loadImage.py
@创建时间:2023 11 20
模型训练数据集
'''
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import MNIST
from torchvision import transforms
class MNISTImageDataset_train(Dataset):
def __init__(self) -> None:
super().__init__()
self.trainData = MNIST('./Data/ImageData', train=True, download=True,transform=transforms.ToTensor())
def __len__(self) -> int:
return len(self.trainData)
def __getitem__(self, index):
return self.trainData[index][0],self.trainData[index][1]
class MNISTImageDataset_test(Dataset):
def __init__(self) -> None:
super().__init__()
self.testData = MNIST('./Data/ImageData', train=False, download=True,transform=transforms.ToTensor())
def __len__(self) -> int:
return len(self.testData)
def __getitem__(self, index):
return self.testData[index][0],self.testData[index][1]
if __name__ == "__main__":
print(len(MNISTImageDataset_train()))
print(len(MNISTImageDataset_test()))
'''
@作者:你遇了我321640253@qq.com
@文件:loadImage.py
@创建时间:2023 11 20
模型训练数据集
'''
from PIL import Image
from torch.utils.data import Dataset
from torchvision.datasets import MNIST
from torchvision import transforms
class MNISTImageDataset_train(Dataset):
def __init__(self) -> None:
super().__init__()
self.trainData = MNIST('./Data/ImageData', train=True, download=True,transform=transforms.ToTensor())
def __len__(self) -> int:
return len(self.trainData)
def __getitem__(self, index):
return self.trainData[index][0],self.trainData[index][1]
class MNISTImageDataset_test(Dataset):
def __init__(self) -> None:
super().__init__()
self.testData = MNIST('./Data/ImageData', train=False, download=True,transform=transforms.ToTensor())
def __len__(self) -> int:
return len(self.testData)
def __getitem__(self, index):
return self.testData[index][0],self.testData[index][1]
if __name__ == "__main__":
print(len(MNISTImageDataset_train()))
print(len(MNISTImageDataset_test()))

View File

@@ -1,2 +1,2 @@
### 存放训练模型日志文件
### 存放训练模型日志文件
### 存放训练模型权重文件

View File

@@ -0,0 +1,44 @@
## 项目结构
```
├── Data
│ ├── ImageData
│ │ ├── MNIST
│ │ │ └── raw
│ │ │ ├── t10k-images-idx3-ubyte
│ │ │ ├── t10k-images-idx3-ubyte.gz
│ │ │ ├── t10k-labels-idx1-ubyte
│ │ │ ├── t10k-labels-idx1-ubyte.gz
│ │ │ ├── train-images-idx3-ubyte
│ │ │ ├── train-images-idx3-ubyte.gz
│ │ │ ├── train-labels-idx1-ubyte
│ │ │ └── train-labels-idx1-ubyte.gz
│ │ └── README.md
│ ├── loadImage.py
│ └── __pycache__
│ └── loadImage.cpython-310.pyc
├── ModelLog
│ ├── 2023-11-20-23-14-24
│ │ ├── 0_epoch_weights.pth
│ │ ├── 10_epoch_weights.pth
│ │ ├── 15_epoch_weights.pth
│ │ ├── 20_epoch_weights.pth
│ │ ├── 25_epoch_weights.pth
│ │ ├── 30_epoch_weights.pth
│ │ ├── 35_epoch_weights.pth
│ │ ├── 5_epoch_weights.pth
│ │ ├── events.out.tfevents.1700493264.wangko.11248.0
│ │ └── last_epoch_weights.pth
│ └── README.md
├── prediction.py
├── README.md
└── train
├── __pycache__
│ └── VGG16Net.cpython-310.pyc
├── train.py
├── utils
│ ├── __pycache__
│ │ └── tensorborad_utils.cpython-310.pyc
│ └── tensorborad_utils.py
└── VGG16Net.py
```

View File

@@ -1,34 +1,34 @@
'''
@作者:你遇了我321640253@qq.com
@文件:prediction.py
@创建时间:2023 11 20
模型预测功能
'''
import torch
import train.VGG16Net as VGG16Net
class Predict():
'''
:description
使用模型进行预测
:author 你遇了我
'''
def __init__(self,modelPath:str) -> None:
#获取模型结构、加载权重
self.model = VGG16Net.VGG16()
self.model.load_state_dict(torch.load(modelPath))
def predict_img(imgpath:str):
'''
:description 预测图片
:author 你遇了我
:param
imgpath 图片路径
:return
'''
pass
'''
@作者:你遇了我321640253@qq.com
@文件:prediction.py
@创建时间:2023 11 20
模型预测功能
'''
import torch
import train.VGG16Net as VGG16Net
class Predict():
'''
:description
使用模型进行预测
:author 你遇了我
'''
def __init__(self,modelPath:str) -> None:
#获取模型结构、加载权重
self.model = VGG16Net.VGG16()
self.model.load_state_dict(torch.load(modelPath))
def predict_img(imgpath:str):
'''
:description 预测图片
:author 你遇了我
:param
imgpath 图片路径
:return
'''
pass

View File

@@ -1,69 +1,69 @@
'''
@作者:你遇了我321640253@qq.com
@文件:VGG16Net.py
@创建时间:2023 11 20
模型网络结构
'''
import torch
from torch import nn
from torchsummary import summary
# 定义 VGG16 网络结构
class VGG16(nn.Module):
def __init__(self):
super(VGG16, self).__init__()
self.conv1 = nn.Sequential(
#32*1*28*28
nn.Conv2d(1, 16, kernel_size=3, padding=1),
#16*28*28
nn.ReLU(),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
#16*28*28
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv4 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU()
)
self.fc = nn.Linear(128*28*28, 100)
self.fc1 = nn.Linear(100, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = nn.Flatten()(x)
x = self.fc(x)
x = self.fc1(x)
return x
def getSummary(size:tuple):
model = VGG16()
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
'''
@作者:你遇了我321640253@qq.com
@文件:VGG16Net.py
@创建时间:2023 11 20
模型网络结构
'''
import torch
from torch import nn
from torchsummary import summary
# 定义 VGG16 网络结构
class VGG16(nn.Module):
def __init__(self):
super(VGG16, self).__init__()
self.conv1 = nn.Sequential(
#32*1*28*28
nn.Conv2d(1, 16, kernel_size=3, padding=1),
#16*28*28
nn.ReLU(),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
#16*28*28
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv4 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU()
)
self.fc = nn.Linear(128*28*28, 100)
self.fc1 = nn.Linear(100, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = nn.Flatten()(x)
x = self.fc(x)
x = self.fc1(x)
return x
def getSummary(size:tuple):
model = VGG16()
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
summary(model, size)

View File

@@ -1,203 +1,203 @@
'''
@作者:你遇了我321640253@qq.com
@文件:train.py
@创建时间:2023 11 19
训练模型
'''
import os
import sys
#-------------------------------导入数据-------------------------------------
# 获取当前目录的父目录路径
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
print(parent_dir)
# 获取父目录下的 py 文件名C:\Users\86186\Project\Python\handwrittenNum\Data
py_file = os.path.join(parent_dir, 'Data')
sys.path.append(py_file)
try:
from loadImage import MNISTImageDataset_train,MNISTImageDataset_test
except ModuleNotFoundError as e:
raise ValueError("数据路径错误,请检查!")
#-------------------------------导入数据END-------------------------------------
import torch
from torch.utils.data import DataLoader
from torch import nn
from tqdm import tqdm
import VGG16Net
from utils.tensorborad_utils import ModelLog
class trainModule():
#---------配置参数--------------#
ConFig = {
#------------------------------------
#训练世代
#------------------------------------
"epoch" : 40,
#------------------------------------
#批次
#------------------------------------
"batch_size" : 40,
#------------------------------------
#学习率
#------------------------------------
"lr" : 1e-2,
#------------------------------------
#模型保存路径
#------------------------------------
"save_path" : "ModelLog/",
#------------------------------------
#模型每save_epoch次世代保存一次权重
#------------------------------------
"save_epoch" : 5,
#------------------------------------
#模型训练日志保存路径
#------------------------------------
"modelLogPath" : "ModelLog/",
#------------------------------------
#图片的size
#------------------------------------
"input_size" : (1,28,28),
}
def __init__(self) -> None:
#加载训练数据集
self.trainData = DataLoader(dataset=MNISTImageDataset_train(),
batch_size=self.ConFig["batch_size"],
)
#加载测试数据集
self.testData = DataLoader(dataset=MNISTImageDataset_test(),
batch_size=self.ConFig["batch_size"],
)
#构建模型
self.model = VGG16Net.VGG16()
#输出模型的结构
VGG16Net.getSummary(self.ConFig["input_size"])
#加载模型日志记录器
self.modelLog = ModelLog(self.ConFig["modelLogPath"])
#记录模型的计算图
self.modelLog.Write.add_graph(model=self.model, input_to_model=next(iter(self.trainData))[0])
def getLossFunction(self):
'''
:description 获取损失函数
:author 你遇了我
:param
:return
'''
return nn.CrossEntropyLoss()
def getOptimizer(self):
'''
:description 获取优化器
:author 你遇了我
:param
:return
'''
return torch.optim.SGD(params=self.model.parameters(),lr=self.ConFig["lr"])
def train(self):
'''
:description 训练模型
:author 你遇了我
:param
:return
'''
#获取损失函数
LossFun = self.getLossFunction()
#获取优化器
Optimizer = self.getOptimizer()
#显卡可用则使用显卡运行
if torch.cuda.is_available():
self.model.cuda()
LossFun.cuda()
#训练模型
for epoch in range(self.ConFig["epoch"]):
#训练部分
with tqdm(total=len(MNISTImageDataset_train())//self.ConFig['batch_size'],
desc=f"Epoch {epoch}/{self.ConFig['epoch']}",
unit=" batch_size") as tq:
self.model.train()
for x,y in self.trainData:
#显卡可用则使用显卡运行
if torch.cuda.is_available():
x,y = x.cuda(),y.cuda()
#前向传播
out = self.model(x)
#计算损失
loss = LossFun(out,y)
#清空梯度
Optimizer.zero_grad()
#反向传播
loss.backward()
#更新参数
Optimizer.step()
#更新进度条
tq.postfix={"loss":round(float(loss),4)}
tq.update(1)
#记录训练loss值
self.modelLog.Write.add_scalar(tag="Loss/train",scalar_value=loss,global_step=epoch)
#验证部分
with torch.no_grad():
self.model.eval()
with tqdm(total=len(MNISTImageDataset_test())//self.ConFig['batch_size'],
desc="Eval 1/1",
unit=" batch_size") as tq:
for data in self.testData:
imgs,labels = data
#显卡可用则使用显卡运行
if torch.cuda.is_available():
imgs,labels = imgs.cuda(),labels.cuda()
#前向传播
output = self.model(imgs)
#计算损失
loss = LossFun(output,labels)
#更新进度条
tq.postfix={"loss":round(float(loss),4)}
tq.update(1)
#记录验证loss日志
self.modelLog.Write.add_scalar(tag="Loss/eval",scalar_value=loss,global_step=epoch)
#每save_epoch次迭代保存一次权重
if epoch%self.ConFig['save_epoch']==0:
torch.save(self.model.state_dict(),
os.path.join(self.ConFig['save_path'],self.modelLog.timestr,f"{epoch}_epoch_weights.pth")
)
#保存最终model权重
torch.save(self.model.state_dict(),
os.path.join(self.ConFig['save_path'],self.modelLog.timestr,"last_epoch_weights.pth")
)
if __name__ == '__main__':
'''
@作者:你遇了我321640253@qq.com
@文件:train.py
@创建时间:2023 11 19
训练模型
'''
import os
import sys
#-------------------------------导入数据-------------------------------------
# 获取当前目录的父目录路径
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
print(parent_dir)
# 获取父目录下的 py 文件名C:\Users\86186\Project\Python\handwrittenNum\Data
py_file = os.path.join(parent_dir, 'Data')
sys.path.append(py_file)
try:
from loadImage import MNISTImageDataset_train,MNISTImageDataset_test
except ModuleNotFoundError as e:
raise ValueError("数据路径错误,请检查!")
#-------------------------------导入数据END-------------------------------------
import torch
from torch.utils.data import DataLoader
from torch import nn
from tqdm import tqdm
import VGG16Net
from utils.tensorborad_utils import ModelLog
class trainModule():
#---------配置参数--------------#
ConFig = {
#------------------------------------
#训练世代
#------------------------------------
"epoch" : 40,
#------------------------------------
#批次
#------------------------------------
"batch_size" : 40,
#------------------------------------
#学习率
#------------------------------------
"lr" : 1e-2,
#------------------------------------
#模型保存路径
#------------------------------------
"save_path" : "ModelLog/",
#------------------------------------
#模型每save_epoch次世代保存一次权重
#------------------------------------
"save_epoch" : 5,
#------------------------------------
#模型训练日志保存路径
#------------------------------------
"modelLogPath" : "ModelLog/",
#------------------------------------
#图片的size
#------------------------------------
"input_size" : (1,28,28),
}
def __init__(self) -> None:
#加载训练数据集
self.trainData = DataLoader(dataset=MNISTImageDataset_train(),
batch_size=self.ConFig["batch_size"],
)
#加载测试数据集
self.testData = DataLoader(dataset=MNISTImageDataset_test(),
batch_size=self.ConFig["batch_size"],
)
#构建模型
self.model = VGG16Net.VGG16()
#输出模型的结构
VGG16Net.getSummary(self.ConFig["input_size"])
#加载模型日志记录器
self.modelLog = ModelLog(self.ConFig["modelLogPath"])
#记录模型的计算图
self.modelLog.Write.add_graph(model=self.model, input_to_model=next(iter(self.trainData))[0])
def getLossFunction(self):
'''
:description 获取损失函数
:author 你遇了我
:param
:return
'''
return nn.CrossEntropyLoss()
def getOptimizer(self):
'''
:description 获取优化器
:author 你遇了我
:param
:return
'''
return torch.optim.SGD(params=self.model.parameters(),lr=self.ConFig["lr"])
def train(self):
'''
:description 训练模型
:author 你遇了我
:param
:return
'''
#获取损失函数
LossFun = self.getLossFunction()
#获取优化器
Optimizer = self.getOptimizer()
#显卡可用则使用显卡运行
if torch.cuda.is_available():
self.model.cuda()
LossFun.cuda()
#训练模型
for epoch in range(self.ConFig["epoch"]):
#训练部分
with tqdm(total=len(MNISTImageDataset_train())//self.ConFig['batch_size'],
desc=f"Epoch {epoch}/{self.ConFig['epoch']}",
unit=" batch_size") as tq:
self.model.train()
for x,y in self.trainData:
#显卡可用则使用显卡运行
if torch.cuda.is_available():
x,y = x.cuda(),y.cuda()
#前向传播
out = self.model(x)
#计算损失
loss = LossFun(out,y)
#清空梯度
Optimizer.zero_grad()
#反向传播
loss.backward()
#更新参数
Optimizer.step()
#更新进度条
tq.postfix={"loss":round(float(loss),4)}
tq.update(1)
#记录训练loss值
self.modelLog.Write.add_scalar(tag="Loss/train",scalar_value=loss,global_step=epoch)
#验证部分
with torch.no_grad():
self.model.eval()
with tqdm(total=len(MNISTImageDataset_test())//self.ConFig['batch_size'],
desc="Eval 1/1",
unit=" batch_size") as tq:
for data in self.testData:
imgs,labels = data
#显卡可用则使用显卡运行
if torch.cuda.is_available():
imgs,labels = imgs.cuda(),labels.cuda()
#前向传播
output = self.model(imgs)
#计算损失
loss = LossFun(output,labels)
#更新进度条
tq.postfix={"loss":round(float(loss),4)}
tq.update(1)
#记录验证loss日志
self.modelLog.Write.add_scalar(tag="Loss/eval",scalar_value=loss,global_step=epoch)
#每save_epoch次迭代保存一次权重
if epoch%self.ConFig['save_epoch']==0:
torch.save(self.model.state_dict(),
os.path.join(self.ConFig['save_path'],self.modelLog.timestr,f"{epoch}_epoch_weights.pth")
)
#保存最终model权重
torch.save(self.model.state_dict(),
os.path.join(self.ConFig['save_path'],self.modelLog.timestr,"last_epoch_weights.pth")
)
if __name__ == '__main__':
trainModule().train()

View File

@@ -1,35 +1,35 @@
'''
@作者:你遇了我321640253@qq.com
@文件:tensorborad_utils.py
@创建时间:2023 11 20
'''
import time
import os
from torch.utils.tensorboard import SummaryWriter
class ModelLog():
def __init__(self,logdir:str):
self.timestr = self.getTimeStr()
#获取日志路径
logdir = os.path.join(logdir,self.timestr)
#创建日志
self.Write = SummaryWriter(log_dir=logdir)
def getTimeStr(self):
'''
:description 获取当前时间
:author 你遇了我
:param
:return
'''
_time = time.gmtime()
return f"{_time.tm_year}-{_time.tm_mon}-{_time.tm_mday}-{_time.tm_hour+8}-{_time.tm_min}-{_time.tm_sec}"
if __name__ == "__main__":
'''
@作者:你遇了我321640253@qq.com
@文件:tensorborad_utils.py
@创建时间:2023 11 20
'''
import time
import os
from torch.utils.tensorboard import SummaryWriter
class ModelLog():
def __init__(self,logdir:str):
self.timestr = self.getTimeStr()
#获取日志路径
logdir = os.path.join(logdir,self.timestr)
#创建日志
self.Write = SummaryWriter(log_dir=logdir)
def getTimeStr(self):
'''
:description 获取当前时间
:author 你遇了我
:param
:return
'''
_time = time.gmtime()
return f"{_time.tm_year}-{_time.tm_mon}-{_time.tm_mday}-{_time.tm_hour+8}-{_time.tm_min}-{_time.tm_sec}"
if __name__ == "__main__":
ModelLog("ModelLog")