注释结构
This commit is contained in:
@@ -1,69 +1,69 @@
|
||||
'''
|
||||
@作者:你遇了我321640253@qq.com
|
||||
@文件:VGG16Net.py
|
||||
@创建时间:2023 11 20
|
||||
|
||||
模型网络结构
|
||||
'''
|
||||
import torch
|
||||
from torch import nn
|
||||
from torchsummary import summary
|
||||
|
||||
# 定义 VGG16 网络结构
|
||||
class VGG16(nn.Module):
|
||||
def __init__(self):
|
||||
super(VGG16, self).__init__()
|
||||
|
||||
self.conv1 = nn.Sequential(
|
||||
#32*1*28*28
|
||||
nn.Conv2d(1, 16, kernel_size=3, padding=1),
|
||||
#16*28*28
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(16, 16, kernel_size=3, padding=1),
|
||||
#16*28*28
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.conv2 = nn.Sequential(
|
||||
nn.Conv2d(16, 32, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(32, 32, kernel_size=3, padding=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.conv3 = nn.Sequential(
|
||||
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.conv4 = nn.Sequential(
|
||||
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.fc = nn.Linear(128*28*28, 100)
|
||||
self.fc1 = nn.Linear(100, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x = self.conv4(x)
|
||||
x = nn.Flatten()(x)
|
||||
x = self.fc(x)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
|
||||
def getSummary(size:tuple):
|
||||
model = VGG16()
|
||||
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
||||
'''
|
||||
@作者:你遇了我321640253@qq.com
|
||||
@文件:VGG16Net.py
|
||||
@创建时间:2023 11 20
|
||||
|
||||
模型网络结构
|
||||
'''
|
||||
import torch
|
||||
from torch import nn
|
||||
from torchsummary import summary
|
||||
|
||||
# 定义 VGG16 网络结构
|
||||
class VGG16(nn.Module):
|
||||
def __init__(self):
|
||||
super(VGG16, self).__init__()
|
||||
|
||||
self.conv1 = nn.Sequential(
|
||||
#32*1*28*28
|
||||
nn.Conv2d(1, 16, kernel_size=3, padding=1),
|
||||
#16*28*28
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(16, 16, kernel_size=3, padding=1),
|
||||
#16*28*28
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.conv2 = nn.Sequential(
|
||||
nn.Conv2d(16, 32, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(32, 32, kernel_size=3, padding=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.conv3 = nn.Sequential(
|
||||
nn.Conv2d(32, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.conv4 = nn.Sequential(
|
||||
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(128, 128, kernel_size=3, padding=1),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
self.fc = nn.Linear(128*28*28, 100)
|
||||
self.fc1 = nn.Linear(100, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x = self.conv4(x)
|
||||
x = nn.Flatten()(x)
|
||||
x = self.fc(x)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
|
||||
|
||||
|
||||
def getSummary(size:tuple):
|
||||
model = VGG16()
|
||||
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
|
||||
summary(model, size)
|
||||
Reference in New Issue
Block a user