34 lines
1022 B
Python
34 lines
1022 B
Python
from PIL import Image
|
|
|
|
from torch.utils.data import Dataset,DataLoader
|
|
from torchvision.datasets import MNIST
|
|
from torchvision import transforms
|
|
|
|
class MNISTImageDataset_train(Dataset):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.trainData = MNIST('./Data/ImageData', train=True, download=True,transform=transforms.ToTensor())
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.trainData)
|
|
|
|
def __getitem__(self, index):
|
|
return self.trainData[index][0],self.trainData[index][1]
|
|
|
|
|
|
class MNISTImageDataset_test(Dataset):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self.testData = MNIST('./Data/ImageData', train=False, download=True,transform=transforms.ToTensor())
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.testData)
|
|
|
|
def __getitem__(self, index):
|
|
return self.testData[index][0],self.testData[index][1]
|
|
|
|
if __name__ == "__main__":
|
|
print(len(MNISTImageDataset_train()))
|
|
print(len(MNISTImageDataset_test()))
|
|
|