初始化手写数字识别

This commit is contained in:
2023-11-20 17:34:04 +08:00
commit 3a76ff507f
8 changed files with 241 additions and 0 deletions

6
.gitignore vendored Normal file
View File

@@ -0,0 +1,6 @@
Data/ImageData/*
__pycache__
*.pth
!*.md

5
.vscode/settings.json vendored Normal file
View File

@@ -0,0 +1,5 @@
{
"python.analysis.extraPaths": [
"./Data"
]
}

1
Data/ImageData/README.md Normal file
View File

@@ -0,0 +1 @@
存放训练数据文件

33
Data/loadImage.py Normal file
View File

@@ -0,0 +1,33 @@
from PIL import Image
from torch.utils.data import Dataset,DataLoader
from torchvision.datasets import MNIST
from torchvision import transforms
class MNISTImageDataset_train(Dataset):
def __init__(self) -> None:
super().__init__()
self.trainData = MNIST('./Data/ImageData', train=True, download=True,transform=transforms.ToTensor())
def __len__(self) -> int:
return len(self.trainData)
def __getitem__(self, index):
return self.trainData[index][0],self.trainData[index][1]
class MNISTImageDataset_test(Dataset):
def __init__(self) -> None:
super().__init__()
self.testData = MNIST('./Data/ImageData', train=False, download=True,transform=transforms.ToTensor())
def __len__(self) -> int:
return len(self.testData)
def __getitem__(self, index):
return self.testData[index][0],self.testData[index][1]
if __name__ == "__main__":
print(len(MNISTImageDataset_train()))
print(len(MNISTImageDataset_test()))

1
ModelLog/README.md Normal file
View File

@@ -0,0 +1 @@
存放训练模型日志文件

13
prediction.py Normal file
View File

@@ -0,0 +1,13 @@
'''
1 加载数据
2 构建模型
3 获取损失函数
4 获取优化器
5 开始训练 调用3、4
1 img--->model--->out
2 out y 计算loss
'''
for i in range(100):
for img in dasf:

54
train/VGG16Net.py Normal file
View File

@@ -0,0 +1,54 @@
from torch import nn
from torch.utils.data import DataLoader
# 定义 VGG16 网络结构
class VGG16(nn.Module):
def __init__(self):
super(VGG16, self).__init__()
self.conv1 = nn.Sequential(
#32*1*28*28
nn.Conv2d(1, 16, kernel_size=3, padding=1),
#16*28*28
nn.ReLU(),
nn.Conv2d(16, 16, kernel_size=3, padding=1),
#16*28*28
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(32, 32, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU()
)
self.conv4 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU()
)
self.fc = nn.Linear(128*28*28, 100)
self.fc1 = nn.Linear(100, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = nn.Flatten()(x)
x = self.fc(x)
x = self.fc1(x)
return x

128
train/train.py Normal file
View File

@@ -0,0 +1,128 @@
'''
@作者:你遇了我321640253@qq.com
@文件:train.py
@创建时间:2023 11 19
'''
import os
import sys
#-------------------------------导入数据-------------------------------------
# 获取当前目录的父目录路径
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
print(parent_dir)
# 获取父目录下的 py 文件名C:\Users\86186\Project\Python\handwrittenNum\Data
py_file = os.path.join(parent_dir, 'Data')
sys.path.append(py_file)
try:
from loadImage import MNISTImageDataset_train,MNISTImageDataset_test
except ModuleNotFoundError:
print("数据路径错误,请检查!")
#-------------------------------导入数据END-------------------------------------
import torch
from torch.utils.data import DataLoader
from torch import nn
from tqdm import tqdm
import VGG16Net
class trainModule():
#---------配置参数--------------#
ConFig = {
#训练世代
"epoch" : 20,
#批次
"batch_size" : 32,
"lr" : 1e-2,
"save_path" : "ModelLog/",
}
def __init__(self) -> None:
#加载训练数据集
self.trainData = DataLoader(dataset=MNISTImageDataset_train(),
batch_size=self.ConFig["batch_size"],
)
#加载测试数据集
self.testData = DataLoader(dataset=MNISTImageDataset_test(),
batch_size=self.ConFig["batch_size"],
)
#构建模型
self.model = VGG16Net.VGG16()
def getLossFunction(self):
return nn.CrossEntropyLoss()
def getOptimizer(self):
return torch.optim.SGD(params=self.model.parameters(),lr=self.ConFig["lr"])
def train(self):
#获取损失函数
LossFun = self.getLossFunction()
#获取优化器
Optimizer = self.getOptimizer()
#显卡可用则使用显卡运行
if torch.cuda.is_available():
self.model.cuda()
LossFun.cuda()
#训练模型
for epoch in range(self.ConFig["epoch"]):
#训练部分
with tqdm(total=len(MNISTImageDataset_train())//self.ConFig['batch_size'],
desc=f"Epoch {epoch}/{self.ConFig['epoch']}",
unit=" batch_size") as tq:
self.model.train()
for x,y in self.trainData:
#显卡可用则使用显卡运行
if torch.cuda.is_available():
x,y = x.cuda(),y.cuda()
#前向传播
out = self.model(x)
#计算损失
loss = LossFun(out,y)
#清空梯度
Optimizer.zero_grad()
#反向传播
loss.backward()
#更新参数
Optimizer.step()
tq.postfix={"loss":round(float(loss),4)}
tq.update(1)
#验证部分
with torch.no_grad():
self.model.eval()
with tqdm(total=len(MNISTImageDataset_test())//self.ConFig['batch_size'],
desc="Eval 1/1",
unit=" batch_size") as tq:
for data in self.testData:
imgs,labels = data
#显卡可用则使用显卡运行
if torch.cuda.is_available():
imgs,labels = imgs.cuda(),labels.cuda()
output = self.model(imgs)
loss = LossFun(output,labels)
tq.postfix={"loss":round(float(loss),4)}
tq.update(1)
#保存最终model
torch.save(self.model.state_dict(),self.ConFig['save_path']+"last_epoch_weights.pth")
if __name__ == '__main__':
trainModule().train()