250 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright (c) Meta Platforms, Inc. and affiliates.
 | ||
| 
 | ||
| # All rights reserved.
 | ||
| 
 | ||
| # This source code is licensed under the license found in the
 | ||
| # LICENSE file in the root directory of this source tree.
 | ||
| 
 | ||
| 
 | ||
| import math
 | ||
| 
 | ||
| import numpy as np
 | ||
| import torch
 | ||
| import torch.nn as nn
 | ||
| import torch.nn.functional as F
 | ||
| 
 | ||
| 
 | ||
| def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
 | ||
|     if drop_prob == 0. or not training:
 | ||
|         return x
 | ||
|     keep_prob       = 1 - drop_prob
 | ||
|     shape           = (x.shape[0],) + (1,) * (x.ndim - 1)
 | ||
|     random_tensor   = x.new_empty(shape).bernoulli_(keep_prob)
 | ||
|     if keep_prob > 0.0 and scale_by_keep:
 | ||
|         random_tensor.div_(keep_prob)
 | ||
|     return x * random_tensor
 | ||
| 
 | ||
| class DropPath(nn.Module):
 | ||
|     """
 | ||
|     Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
 | ||
|     """
 | ||
|     def __init__(self, drop_prob=None, scale_by_keep=True):
 | ||
|         super(DropPath, self).__init__()
 | ||
|         self.drop_prob = drop_prob
 | ||
|         self.scale_by_keep = scale_by_keep
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
 | ||
| 
 | ||
| def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
 | ||
|     def _no_grad_trunc_normal_(tensor, mean, std, a, b):
 | ||
|         def norm_cdf(x):
 | ||
|             return (1. + math.erf(x / math.sqrt(2.))) / 2.
 | ||
| 
 | ||
|         with torch.no_grad():
 | ||
|             l = norm_cdf((a - mean) / std)
 | ||
|             u = norm_cdf((b - mean) / std)
 | ||
| 
 | ||
|             tensor.uniform_(2 * l - 1, 2 * u - 1)
 | ||
|             tensor.erfinv_()
 | ||
| 
 | ||
|             tensor.mul_(std * math.sqrt(2.))
 | ||
|             tensor.add_(mean)
 | ||
| 
 | ||
|             tensor.clamp_(min=a, max=b)
 | ||
|             return tensor
 | ||
|     return _no_grad_trunc_normal_(tensor, mean, std, a, b)
 | ||
| 
 | ||
| #--------------------------------------#
 | ||
| #   Gelu激活函数的实现
 | ||
| #   利用近似的数学公式
 | ||
| #--------------------------------------#
 | ||
| class GELU(nn.Module):
 | ||
|     def __init__(self):
 | ||
|         super(GELU, self).__init__()
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         return 0.5 * x * (1 + torch.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * torch.pow(x,3))))
 | ||
|     
 | ||
| #---------------------------------------------------------------------------------#
 | ||
| #   LayerNorm 支持两种形式channels_last (default) or channels_first. 
 | ||
| #   channels_last   对应具有形状的输入(batch_size, height, width, channels) 
 | ||
| #   channels_first  对应具有形状的输入(batch_size, channels, height, width).   
 | ||
| #---------------------------------------------------------------------------------#
 | ||
| class LayerNorm(nn.Module):
 | ||
|     def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
 | ||
|         super().__init__()
 | ||
|         self.weight = nn.Parameter(torch.ones(normalized_shape))
 | ||
|         self.bias   = nn.Parameter(torch.zeros(normalized_shape))
 | ||
|         self.eps = eps
 | ||
|         self.data_format = data_format
 | ||
|         if self.data_format not in ["channels_last", "channels_first"]:
 | ||
|             raise NotImplementedError 
 | ||
|         self.normalized_shape = (normalized_shape, )
 | ||
|     
 | ||
|     def forward(self, x):
 | ||
|         if self.data_format == "channels_last":
 | ||
|             return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
 | ||
|         elif self.data_format == "channels_first":
 | ||
|             u = x.mean(1, keepdim=True)
 | ||
|             s = (x - u).pow(2).mean(1, keepdim=True)
 | ||
|             x = (x - u) / torch.sqrt(s + self.eps)
 | ||
|             x = self.weight[:, None, None] * x + self.bias[:, None, None]
 | ||
|             return x
 | ||
| 
 | ||
| #--------------------------------------------------------------------------------------------------------------#
 | ||
| #   ConvNeXt Block有两种等效的实现:
 | ||
| #   (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
 | ||
| #   (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
 | ||
| #   代码中使用(2),因为这个在PyTorch中稍微快一点
 | ||
| #--------------------------------------------------------------------------------------------------------------#
 | ||
| class Block(nn.Module):
 | ||
|     def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
 | ||
|         super().__init__()
 | ||
|         #--------------------------#
 | ||
|         #   7x7的逐层卷积
 | ||
|         #--------------------------#
 | ||
|         self.dwconv     = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
 | ||
|         self.norm       = LayerNorm(dim, eps=1e-6)
 | ||
|         #--------------------------#
 | ||
|         #   利用全连接层代替1x1卷积
 | ||
|         #--------------------------#
 | ||
|         self.pwconv1    = nn.Linear(dim, 4 * dim)
 | ||
|         self.act        = GELU()
 | ||
|         #--------------------------#
 | ||
|         #   利用全连接层代替1x1卷积
 | ||
|         #--------------------------#
 | ||
|         self.pwconv2    = nn.Linear(4 * dim, dim)
 | ||
|         #--------------------------#
 | ||
|         #   加入缩放系数
 | ||
|         #--------------------------#
 | ||
|         self.gamma      = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None
 | ||
|         #--------------------------#
 | ||
|         #   加入Drop_path正则化
 | ||
|         #--------------------------#
 | ||
|         self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         input = x
 | ||
|         #--------------------------#
 | ||
|         #   7x7的逐层卷积
 | ||
|         #--------------------------#
 | ||
|         x = self.dwconv(x)
 | ||
|         x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
 | ||
|         x = self.norm(x)
 | ||
|         #--------------------------#
 | ||
|         #   利用全连接层代替1x1卷积
 | ||
|         #--------------------------#
 | ||
|         x = self.pwconv1(x)
 | ||
|         x = self.act(x)
 | ||
|         #--------------------------#
 | ||
|         #   利用全连接层代替1x1卷积
 | ||
|         #--------------------------#
 | ||
|         x = self.pwconv2(x)
 | ||
|         #--------------------------#
 | ||
|         #   加入缩放系数
 | ||
|         #--------------------------#
 | ||
|         if self.gamma is not None:
 | ||
|             x = self.gamma * x
 | ||
|         x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
 | ||
|         #--------------------------#
 | ||
|         #   加入Drop_path正则化
 | ||
|         #--------------------------#
 | ||
|         x = input + self.drop_path(x)
 | ||
|         return x
 | ||
| 
 | ||
| #-----------------------------------------------------#
 | ||
| #   ConvNeXt
 | ||
| #   A PyTorch impl of : `A ConvNet for the 2020s`
 | ||
| #   https://arxiv.org/pdf/2201.03545.pdf
 | ||
| #-----------------------------------------------------#
 | ||
| class ConvNeXt(nn.Module):
 | ||
|     def __init__(
 | ||
|         self, in_chans=3, num_classes=1000, depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], 
 | ||
|         drop_path_rate=0., layer_scale_init_value=1e-6, head_init_scale=1., **kwargs
 | ||
|     ):
 | ||
|         super().__init__()
 | ||
| 
 | ||
|         self.downsample_layers = nn.ModuleList()
 | ||
|         #--------------------------------------------------#
 | ||
|         #   bs, 3, 224, 224 -> bs, 96, 56, 56
 | ||
|         #--------------------------------------------------#
 | ||
|         stem = nn.Sequential(
 | ||
|             nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
 | ||
|             LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
 | ||
|         )
 | ||
|         self.downsample_layers.append(stem)
 | ||
|         
 | ||
|         #--------------------------------------------------#
 | ||
|         #   定义三次下采样的过程
 | ||
|         #   利用步长为2x2,卷积核大小为2x2的卷积进行下采样
 | ||
|         #--------------------------------------------------#
 | ||
|         for i in range(3):
 | ||
|             downsample_layer = nn.Sequential(
 | ||
|                 LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
 | ||
|                 nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
 | ||
|             )
 | ||
|             self.downsample_layers.append(downsample_layer)
 | ||
| 
 | ||
|         #--------------------------------------------------#
 | ||
|         #   根据深度的不同,定义不同的drop率
 | ||
|         #--------------------------------------------------#
 | ||
|         self.stages = nn.ModuleList()
 | ||
|         dp_rates    = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
 | ||
|         cur         = 0
 | ||
|         #--------------------------------------------------#
 | ||
|         #   整个ConvNeXt除了Stem外,存在四个Stage
 | ||
|         #   每个Stage里面是多个ConvNeXt Block的堆叠。
 | ||
|         #--------------------------------------------------#
 | ||
|         for i in range(4):
 | ||
|             stage = nn.Sequential(
 | ||
|                 *[Block(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
 | ||
|             )
 | ||
|             self.stages.append(stage)
 | ||
|             cur += depths[i]
 | ||
| 
 | ||
|         self.apply(self._init_weights)
 | ||
| 
 | ||
|     def _init_weights(self, m):
 | ||
|         if isinstance(m, (nn.Conv2d, nn.Linear)):
 | ||
|             trunc_normal_(m.weight, std=.02)
 | ||
|             nn.init.constant_(m.bias, 0)
 | ||
| 
 | ||
|     def forward(self, x):
 | ||
|         outs = []
 | ||
|         for i in range(4):
 | ||
|             x = self.downsample_layers[i](x)
 | ||
|             x = self.stages[i](x)
 | ||
|             if i != 0:
 | ||
|                 outs.append(x)
 | ||
|         return outs
 | ||
| 
 | ||
| model_urls = {
 | ||
|     "convnext_tiny_1k"      : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/convnext_tiny_1k_224_ema_no_jit.pth",
 | ||
|     "convnext_small_1k"     : "https://github.com/bubbliiiing/yolov5-pytorch/releases/download/v1.0/convnext_small_1k_224_ema_no_jit.pth",
 | ||
| }
 | ||
| 
 | ||
| #------------------------------------------------------#
 | ||
| #   Tiny约等于Cspdarknet-L的尺寸
 | ||
| #------------------------------------------------------#
 | ||
| def ConvNeXt_Tiny(pretrained=False, **kwargs):
 | ||
|     model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
 | ||
|     if pretrained:
 | ||
|         url = model_urls['convnext_tiny_1k']
 | ||
|         checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
 | ||
|         model.load_state_dict(checkpoint, strict=False)
 | ||
|         print("Load weights from ", url.split('/')[-1])
 | ||
|     return model
 | ||
| 
 | ||
| #------------------------------------------------------#
 | ||
| #   Tiny约等于Cspdarknet-X的尺寸
 | ||
| #------------------------------------------------------#
 | ||
| def ConvNeXt_Small(pretrained=False, **kwargs):
 | ||
|     model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
 | ||
|     if pretrained:
 | ||
|         url = model_urls['convnext_small_1k']
 | ||
|         checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", model_dir="./model_data")
 | ||
|         model.load_state_dict(checkpoint, strict=False)
 | ||
|         print("Load weights from ", url.split('/')[-1])
 | ||
|     return model
 |