663 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			663 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import colorsys
 | 
						||
import os
 | 
						||
import time
 | 
						||
 | 
						||
import cv2
 | 
						||
import numpy as np
 | 
						||
import torch
 | 
						||
import torch.nn as nn
 | 
						||
from PIL import ImageDraw, ImageFont, Image
 | 
						||
 | 
						||
from nets.yolo import YoloBody
 | 
						||
from utils.utils import (cvtColor, get_anchors, get_classes, preprocess_input,
 | 
						||
                         resize_image, show_config)
 | 
						||
from utils.utils_bbox import DecodeBox, DecodeBoxNP
 | 
						||
 | 
						||
'''
 | 
						||
训练自己的数据集必看注释!
 | 
						||
'''
 | 
						||
class YOLO(object):
 | 
						||
    _defaults = {
 | 
						||
        #--------------------------------------------------------------------------#
 | 
						||
        #   使用自己训练好的模型进行预测一定要修改model_path和classes_path!
 | 
						||
        #   model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
 | 
						||
        #
 | 
						||
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
 | 
						||
        #   验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
 | 
						||
        #   如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
 | 
						||
        #--------------------------------------------------------------------------#
 | 
						||
        "model_path"        : r'logs-yolov5\1.pth',
 | 
						||
        "classes_path"      : 'trainYolov5-v6\\model_data/coco_classes.txt',
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   anchors_path代表先验框对应的txt文件,一般不修改。
 | 
						||
        #   anchors_mask用于帮助代码找到对应的先验框,一般不修改。
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "anchors_path"      : 'trainYolov5-v6\\model_data/yolo_anchors.txt',
 | 
						||
        "anchors_mask"      : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   输入图片的大小,必须为32的倍数。
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "input_shape"       : [640, 640],
 | 
						||
        #------------------------------------------------------#
 | 
						||
        #   backbone        cspdarknet(默认)
 | 
						||
        #                   convnext_tiny
 | 
						||
        #                   convnext_small
 | 
						||
        #                   swin_transfomer_tiny
 | 
						||
        #------------------------------------------------------#
 | 
						||
        "backbone"          : 'cspdarknet',
 | 
						||
        #------------------------------------------------------#
 | 
						||
        #   所使用的YoloV5的版本。s、m、l、x
 | 
						||
        #   在除cspdarknet的其它主干中仅影响panet的大小
 | 
						||
        #------------------------------------------------------#
 | 
						||
        "phi"               : 's',
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   只有得分大于置信度的预测框会被保留下来
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "confidence"        : 0.5,
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   非极大抑制所用到的nms_iou大小
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "nms_iou"           : 0.3,
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
 | 
						||
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "letterbox_image"   : True,
 | 
						||
        #-------------------------------#
 | 
						||
        #   是否使用Cuda
 | 
						||
        #   没有GPU可以设置成False
 | 
						||
        #-------------------------------#
 | 
						||
        "cuda"              : True,
 | 
						||
    }
 | 
						||
 | 
						||
    @classmethod
 | 
						||
    def get_defaults(cls, n):
 | 
						||
        if n in cls._defaults:
 | 
						||
            return cls._defaults[n]
 | 
						||
        else:
 | 
						||
            return "Unrecognized attribute name '" + n + "'"
 | 
						||
 | 
						||
    #---------------------------------------------------#
 | 
						||
    #   初始化YOLO
 | 
						||
    #---------------------------------------------------#
 | 
						||
    def __init__(self, **kwargs):
 | 
						||
        self.__dict__.update(self._defaults)
 | 
						||
        for name, value in kwargs.items():
 | 
						||
            setattr(self, name, value)
 | 
						||
            self._defaults[name] = value 
 | 
						||
            
 | 
						||
        #---------------------------------------------------#
 | 
						||
        #   获得种类和先验框的数量
 | 
						||
        #---------------------------------------------------#
 | 
						||
        self.class_names, self.num_classes  = get_classes(self.classes_path)
 | 
						||
        self.anchors, self.num_anchors      = get_anchors(self.anchors_path)
 | 
						||
        self.bbox_util                      = DecodeBox(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask)
 | 
						||
 | 
						||
        #---------------------------------------------------#
 | 
						||
        #   画框设置不同的颜色
 | 
						||
        #---------------------------------------------------#
 | 
						||
        hsv_tuples = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
 | 
						||
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
 | 
						||
        self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
 | 
						||
        self.generate()
 | 
						||
 | 
						||
        show_config(**self._defaults)
 | 
						||
 | 
						||
    #---------------------------------------------------#
 | 
						||
    #   生成模型
 | 
						||
    #---------------------------------------------------#
 | 
						||
    def generate(self, onnx=False):
 | 
						||
        #---------------------------------------------------#
 | 
						||
        #   建立yolo模型,载入yolo模型的权重
 | 
						||
        #---------------------------------------------------#
 | 
						||
        self.net    = YoloBody(self.anchors_mask, self.num_classes, self.phi, backbone = self.backbone, input_shape = self.input_shape)
 | 
						||
        device      = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 | 
						||
        self.net.load_state_dict(torch.load(self.model_path, map_location=device),strict=False)
 | 
						||
        self.net    = self.net.eval()
 | 
						||
        print('{} model, and classes loaded.'.format(self.model_path))
 | 
						||
        if not onnx:
 | 
						||
            if self.cuda:
 | 
						||
                self.net = nn.DataParallel(self.net)
 | 
						||
                self.net = self.net.cuda()
 | 
						||
 | 
						||
    #---------------------------------------------------#
 | 
						||
    #   检测图片
 | 
						||
    #---------------------------------------------------#
 | 
						||
    def detect_image(self, image, crop = False, count = False):
 | 
						||
        #---------------------------------------------------#
 | 
						||
        #   计算输入图片的高和宽
 | 
						||
        #---------------------------------------------------#
 | 
						||
        image_shape = np.array(np.shape(image)[0:2])
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
 | 
						||
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image       = cvtColor(image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   给图像增加灰条,实现不失真的resize
 | 
						||
        #   也可以直接resize进行识别
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   添加上batch_size维度
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
 | 
						||
 | 
						||
        with torch.no_grad():
 | 
						||
            images = torch.from_numpy(image_data)
 | 
						||
            if self.cuda:
 | 
						||
                images = images.cuda()
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将图像输入网络当中进行预测!
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            outputs = self.net(images)
 | 
						||
            outputs = self.bbox_util.decode_box(outputs)
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将预测框进行堆叠,然后进行非极大抑制
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
 | 
						||
                        image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
 | 
						||
                                                    
 | 
						||
            if results[0] is None: 
 | 
						||
                return image
 | 
						||
 | 
						||
            top_label   = np.array(results[0][:, 6], dtype = 'int32')
 | 
						||
            top_conf    = results[0][:, 4] * results[0][:, 5]
 | 
						||
            top_boxes   = results[0][:, :4]
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   设置字体与边框厚度
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        font        = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
 | 
						||
        thickness   = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1))
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   计数
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        if count:
 | 
						||
            print("top_label:", top_label)
 | 
						||
            classes_nums    = np.zeros([self.num_classes])
 | 
						||
            for i in range(self.num_classes):
 | 
						||
                num = np.sum(top_label == i)
 | 
						||
                if num > 0:
 | 
						||
                    print(self.class_names[i], " : ", num)
 | 
						||
                classes_nums[i] = num
 | 
						||
            print("classes_nums:", classes_nums)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   是否进行目标的裁剪
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        if crop:
 | 
						||
            for i, c in list(enumerate(top_boxes)):
 | 
						||
                top, left, bottom, right = top_boxes[i]
 | 
						||
                top     = max(0, np.floor(top).astype('int32'))
 | 
						||
                left    = max(0, np.floor(left).astype('int32'))
 | 
						||
                bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
 | 
						||
                right   = min(image.size[0], np.floor(right).astype('int32'))
 | 
						||
                
 | 
						||
                dir_save_path = "img_crop"
 | 
						||
                if not os.path.exists(dir_save_path):
 | 
						||
                    os.makedirs(dir_save_path)
 | 
						||
                crop_image = image.crop([left, top, right, bottom])
 | 
						||
                crop_image.save(os.path.join(dir_save_path, "crop_" + str(i) + ".png"), quality=95, subsampling=0)
 | 
						||
                print("save crop_" + str(i) + ".png to " + dir_save_path)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   图像绘制
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        for i, c in list(enumerate(top_label)):
 | 
						||
            predicted_class = self.class_names[int(c)]
 | 
						||
            box             = top_boxes[i]
 | 
						||
            score           = top_conf[i]
 | 
						||
 | 
						||
            top, left, bottom, right = box
 | 
						||
 | 
						||
            top     = max(0, np.floor(top).astype('int32'))
 | 
						||
            left    = max(0, np.floor(left).astype('int32'))
 | 
						||
            bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
 | 
						||
            right   = min(image.size[0], np.floor(right).astype('int32'))
 | 
						||
 | 
						||
            label = '{} {:.2f}'.format(predicted_class, score)
 | 
						||
            draw = ImageDraw.Draw(image)
 | 
						||
            label_size = draw.textsize(label, font)
 | 
						||
            label = label.encode('utf-8')
 | 
						||
            print(label, top, left, bottom, right)
 | 
						||
            
 | 
						||
            if top - label_size[1] >= 0:
 | 
						||
                text_origin = np.array([left, top - label_size[1]])
 | 
						||
            else:
 | 
						||
                text_origin = np.array([left, top + 1])
 | 
						||
 | 
						||
            for i in range(thickness):
 | 
						||
                draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
 | 
						||
            draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
 | 
						||
            draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
 | 
						||
            del draw
 | 
						||
 | 
						||
        return image
 | 
						||
 | 
						||
    def get_FPS(self, image, test_interval):
 | 
						||
        image_shape = np.array(np.shape(image)[0:2])
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
 | 
						||
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image       = cvtColor(image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   给图像增加灰条,实现不失真的resize
 | 
						||
        #   也可以直接resize进行识别
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   添加上batch_size维度
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
 | 
						||
 | 
						||
        with torch.no_grad():
 | 
						||
            images = torch.from_numpy(image_data)
 | 
						||
            if self.cuda:
 | 
						||
                images = images.cuda()
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将图像输入网络当中进行预测!
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            outputs = self.net(images)
 | 
						||
            outputs = self.bbox_util.decode_box(outputs)
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将预测框进行堆叠,然后进行非极大抑制
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
 | 
						||
                        image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou)
 | 
						||
                                                    
 | 
						||
        t1 = time.time()
 | 
						||
        for _ in range(test_interval):
 | 
						||
            with torch.no_grad():
 | 
						||
                #---------------------------------------------------------#
 | 
						||
                #   将图像输入网络当中进行预测!
 | 
						||
                #---------------------------------------------------------#
 | 
						||
                outputs = self.net(images)
 | 
						||
                outputs = self.bbox_util.decode_box(outputs)
 | 
						||
                #---------------------------------------------------------#
 | 
						||
                #   将预测框进行堆叠,然后进行非极大抑制
 | 
						||
                #---------------------------------------------------------#
 | 
						||
                results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
 | 
						||
                            image_shape, self.letterbox_image, conf_thres=self.confidence, nms_thres=self.nms_iou)
 | 
						||
                            
 | 
						||
        t2 = time.time()
 | 
						||
        tact_time = (t2 - t1) / test_interval
 | 
						||
        return tact_time
 | 
						||
 | 
						||
    def detect_heatmap(self, image, heatmap_save_path):
 | 
						||
        import cv2
 | 
						||
        import matplotlib.pyplot as plt
 | 
						||
        def sigmoid(x):
 | 
						||
            y = 1.0 / (1.0 + np.exp(-x))
 | 
						||
            return y
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
 | 
						||
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image       = cvtColor(image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   给图像增加灰条,实现不失真的resize
 | 
						||
        #   也可以直接resize进行识别
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = resize_image(image, (self.input_shape[1],self.input_shape[0]), self.letterbox_image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   添加上batch_size维度
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
 | 
						||
 | 
						||
        with torch.no_grad():
 | 
						||
            images = torch.from_numpy(image_data)
 | 
						||
            if self.cuda:
 | 
						||
                images = images.cuda()
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将图像输入网络当中进行预测!
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            outputs = self.net(images)
 | 
						||
        
 | 
						||
        plt.imshow(image, alpha=1)
 | 
						||
        plt.axis('off')
 | 
						||
        mask    = np.zeros((image.size[1], image.size[0]))
 | 
						||
        for sub_output in outputs:
 | 
						||
            sub_output = sub_output.cpu().numpy()
 | 
						||
            b, c, h, w = np.shape(sub_output)
 | 
						||
            sub_output = np.transpose(np.reshape(sub_output, [b, 3, -1, h, w]), [0, 3, 4, 1, 2])[0]
 | 
						||
            score      = np.max(sigmoid(sub_output[..., 4]), -1)
 | 
						||
            score      = cv2.resize(score, (image.size[0], image.size[1]))
 | 
						||
            normed_score    = (score * 255).astype('uint8')
 | 
						||
            mask            = np.maximum(mask, normed_score)
 | 
						||
            
 | 
						||
        plt.imshow(mask, alpha=0.5, interpolation='nearest', cmap="jet")
 | 
						||
 | 
						||
        plt.axis('off')
 | 
						||
        plt.subplots_adjust(top=1, bottom=0, right=1,  left=0, hspace=0, wspace=0)
 | 
						||
        plt.margins(0, 0)
 | 
						||
        plt.savefig(heatmap_save_path, dpi=200, bbox_inches='tight', pad_inches = -0.1)
 | 
						||
        print("Save to the " + heatmap_save_path)
 | 
						||
        plt.show()
 | 
						||
 | 
						||
    def convert_to_onnx(self, simplify, model_path):
 | 
						||
        import onnx
 | 
						||
        self.generate(onnx=True)
 | 
						||
 | 
						||
        im                  = torch.zeros(1, 3, *self.input_shape).to('cpu')  # image size(1, 3, 512, 512) BCHW
 | 
						||
        input_layer_names   = ["images"]
 | 
						||
        output_layer_names  = ["output"]
 | 
						||
        
 | 
						||
        # Export the model
 | 
						||
        print(f'Starting export with onnx {onnx.__version__}.')
 | 
						||
        torch.onnx.export(self.net,
 | 
						||
                        im,
 | 
						||
                        f               = model_path,
 | 
						||
                        verbose         = False,
 | 
						||
                        opset_version   = 12,
 | 
						||
                        training        = torch.onnx.TrainingMode.EVAL,
 | 
						||
                        do_constant_folding = True,
 | 
						||
                        input_names     = input_layer_names,
 | 
						||
                        output_names    = output_layer_names,
 | 
						||
                        dynamic_axes    = None)
 | 
						||
 | 
						||
        # Checks
 | 
						||
        model_onnx = onnx.load(model_path)  # load onnx model
 | 
						||
        onnx.checker.check_model(model_onnx)  # check onnx model
 | 
						||
 | 
						||
        # Simplify onnx
 | 
						||
        if simplify:
 | 
						||
            import onnxsim
 | 
						||
            print(f'Simplifying with onnx-simplifier {onnxsim.__version__}.')
 | 
						||
            model_onnx, check = onnxsim.simplify(
 | 
						||
                model_onnx,
 | 
						||
                dynamic_input_shape=False,
 | 
						||
                input_shapes=None)
 | 
						||
            assert check, 'assert check failed'
 | 
						||
            onnx.save(model_onnx, model_path)
 | 
						||
 | 
						||
        print('Onnx model save as {}'.format(model_path))
 | 
						||
 | 
						||
    def get_map_txt(self, image_id, image, class_names, map_out_path):
 | 
						||
        f = open(os.path.join(map_out_path, "detection-results/"+image_id+".txt"), "w", encoding='utf-8') 
 | 
						||
        image_shape = np.array(np.shape(image)[0:2])
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
 | 
						||
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image       = cvtColor(image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   给图像增加灰条,实现不失真的resize
 | 
						||
        #   也可以直接resize进行识别
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = resize_image(image, (self.input_shape[1], self.input_shape[0]), self.letterbox_image)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   添加上batch_size维度
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
 | 
						||
 | 
						||
        with torch.no_grad():
 | 
						||
            images = torch.from_numpy(image_data)
 | 
						||
            if self.cuda:
 | 
						||
                images = images.cuda()
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将图像输入网络当中进行预测!
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            outputs = self.net(images)
 | 
						||
            outputs = self.bbox_util.decode_box(outputs)
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            #   将预测框进行堆叠,然后进行非极大抑制
 | 
						||
            #---------------------------------------------------------#
 | 
						||
            results = self.bbox_util.non_max_suppression(torch.cat(outputs, 1), self.num_classes, self.input_shape, 
 | 
						||
                        image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
 | 
						||
                                                    
 | 
						||
            if results[0] is None: 
 | 
						||
                return 
 | 
						||
 | 
						||
            top_label   = np.array(results[0][:, 6], dtype = 'int32')
 | 
						||
            top_conf    = results[0][:, 4] * results[0][:, 5]
 | 
						||
            top_boxes   = results[0][:, :4]
 | 
						||
 | 
						||
        for i, c in list(enumerate(top_label)):
 | 
						||
            predicted_class = self.class_names[int(c)]
 | 
						||
            box             = top_boxes[i]
 | 
						||
            score           = str(top_conf[i])
 | 
						||
 | 
						||
            top, left, bottom, right = box
 | 
						||
            if predicted_class not in class_names:
 | 
						||
                continue
 | 
						||
 | 
						||
            f.write("%s %s %s %s %s %s\n" % (predicted_class, score[:6], str(int(left)), str(int(top)), str(int(right)),str(int(bottom))))
 | 
						||
 | 
						||
        f.close()
 | 
						||
        return 
 | 
						||
 | 
						||
class YOLO_ONNX(object):
 | 
						||
    _defaults = {
 | 
						||
        #--------------------------------------------------------------------------#
 | 
						||
        #   使用自己训练好的模型进行预测一定要修改onnx_path和classes_path!
 | 
						||
        #   onnx_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
 | 
						||
        #
 | 
						||
        #   训练好后logs文件夹下存在多个权值文件,选择验证集损失较低的即可。
 | 
						||
        #   验证集损失较低不代表mAP较高,仅代表该权值在验证集上泛化性能较好。
 | 
						||
        #   如果出现shape不匹配,同时要注意训练时的onnx_path和classes_path参数的修改
 | 
						||
        #--------------------------------------------------------------------------#
 | 
						||
        "onnx_path"         : 'model_data/models.onnx',
 | 
						||
        "classes_path"      : 'model_data/coco_classes.txt',
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   anchors_path代表先验框对应的txt文件,一般不修改。
 | 
						||
        #   anchors_mask用于帮助代码找到对应的先验框,一般不修改。
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "anchors_path"      : 'model_data/yolo_anchors.txt',
 | 
						||
        "anchors_mask"      : [[6, 7, 8], [3, 4, 5], [0, 1, 2]],
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   输入图片的大小,必须为32的倍数。
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "input_shape"       : [640, 640],
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   只有得分大于置信度的预测框会被保留下来
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "confidence"        : 0.5,
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   非极大抑制所用到的nms_iou大小
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "nms_iou"           : 0.3,
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        #   该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
 | 
						||
        #   在多次测试后,发现关闭letterbox_image直接resize的效果更好
 | 
						||
        #---------------------------------------------------------------------#
 | 
						||
        "letterbox_image"   : True
 | 
						||
    }
 | 
						||
    
 | 
						||
    @classmethod
 | 
						||
    def get_defaults(cls, n):
 | 
						||
        if n in cls._defaults:
 | 
						||
            return cls._defaults[n]
 | 
						||
        else:
 | 
						||
            return "Unrecognized attribute name '" + n + "'"
 | 
						||
 | 
						||
    #---------------------------------------------------#
 | 
						||
    #   初始化YOLO
 | 
						||
    #---------------------------------------------------#
 | 
						||
    def __init__(self, **kwargs):
 | 
						||
        self.__dict__.update(self._defaults)
 | 
						||
        for name, value in kwargs.items():
 | 
						||
            setattr(self, name, value)
 | 
						||
            self._defaults[name] = value 
 | 
						||
            
 | 
						||
        import onnxruntime
 | 
						||
        self.onnx_session   = onnxruntime.InferenceSession(self.onnx_path)
 | 
						||
        # 获得所有的输入node
 | 
						||
        self.input_name     = self.get_input_name()
 | 
						||
        # 获得所有的输出node
 | 
						||
        self.output_name    = self.get_output_name()
 | 
						||
 | 
						||
        #---------------------------------------------------#
 | 
						||
        #   获得种类和先验框的数量
 | 
						||
        #---------------------------------------------------#
 | 
						||
        self.class_names, self.num_classes  = self.get_classes(self.classes_path)
 | 
						||
        self.anchors, self.num_anchors      = self.get_anchors(self.anchors_path)
 | 
						||
        self.bbox_util                      = DecodeBoxNP(self.anchors, self.num_classes, (self.input_shape[0], self.input_shape[1]), self.anchors_mask)
 | 
						||
 | 
						||
        #---------------------------------------------------#
 | 
						||
        #   画框设置不同的颜色
 | 
						||
        #---------------------------------------------------#
 | 
						||
        hsv_tuples  = [(x / self.num_classes, 1., 1.) for x in range(self.num_classes)]
 | 
						||
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
 | 
						||
        self.colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors))
 | 
						||
 | 
						||
        show_config(**self._defaults)
 | 
						||
 
 | 
						||
    def get_classes(self, classes_path):
 | 
						||
        with open(classes_path, encoding='utf-8') as f:
 | 
						||
            class_names = f.readlines()
 | 
						||
        class_names = [c.strip() for c in class_names]
 | 
						||
        return class_names, len(class_names)
 | 
						||
    
 | 
						||
    def get_anchors(self, anchors_path):
 | 
						||
        '''loads the anchors from a file'''
 | 
						||
        with open(anchors_path, encoding='utf-8') as f:
 | 
						||
            anchors = f.readline()
 | 
						||
        anchors = [float(x) for x in anchors.split(',')]
 | 
						||
        anchors = np.array(anchors).reshape(-1, 2)
 | 
						||
        return anchors, len(anchors)
 | 
						||
 | 
						||
    def get_input_name(self):
 | 
						||
        # 获得所有的输入node
 | 
						||
        input_name=[]
 | 
						||
        for node in self.onnx_session.get_inputs():
 | 
						||
            input_name.append(node.name)
 | 
						||
        return input_name
 | 
						||
 
 | 
						||
    def get_output_name(self):
 | 
						||
        # 获得所有的输出node
 | 
						||
        output_name=[]
 | 
						||
        for node in self.onnx_session.get_outputs():
 | 
						||
            output_name.append(node.name)
 | 
						||
        return output_name
 | 
						||
 
 | 
						||
    def get_input_feed(self,image_tensor):
 | 
						||
        # 利用input_name获得输入的tensor
 | 
						||
        input_feed={}
 | 
						||
        for name in self.input_name:
 | 
						||
            input_feed[name]=image_tensor
 | 
						||
        return input_feed
 | 
						||
    
 | 
						||
    #---------------------------------------------------#
 | 
						||
    #   对输入图像进行resize
 | 
						||
    #---------------------------------------------------#
 | 
						||
    def resize_image(self, image, size, letterbox_image, mode='PIL'):
 | 
						||
        if mode == 'PIL':
 | 
						||
            iw, ih  = image.size
 | 
						||
            w, h    = size
 | 
						||
 | 
						||
            if letterbox_image:
 | 
						||
                scale   = min(w/iw, h/ih)
 | 
						||
                nw      = int(iw*scale)
 | 
						||
                nh      = int(ih*scale)
 | 
						||
 | 
						||
                image   = image.resize((nw,nh), Image.BICUBIC)
 | 
						||
                new_image = Image.new('RGB', size, (128,128,128))
 | 
						||
                new_image.paste(image, ((w-nw)//2, (h-nh)//2))
 | 
						||
            else:
 | 
						||
                new_image = image.resize((w, h), Image.BICUBIC)
 | 
						||
        else:
 | 
						||
            image = np.array(image)
 | 
						||
            if letterbox_image:
 | 
						||
                # 获得现在的shape
 | 
						||
                shape       = np.shape(image)[:2]
 | 
						||
                # 获得输出的shape
 | 
						||
                if isinstance(size, int):
 | 
						||
                    size    = (size, size)
 | 
						||
 | 
						||
                # 计算缩放的比例
 | 
						||
                r = min(size[0] / shape[0], size[1] / shape[1])
 | 
						||
 | 
						||
                # 计算缩放后图片的高宽
 | 
						||
                new_unpad   = int(round(shape[1] * r)), int(round(shape[0] * r))
 | 
						||
                dw, dh      = size[1] - new_unpad[0], size[0] - new_unpad[1]
 | 
						||
 | 
						||
                # 除以2以padding到两边
 | 
						||
                dw          /= 2  
 | 
						||
                dh          /= 2
 | 
						||
        
 | 
						||
                # 对图像进行resize
 | 
						||
                if shape[::-1] != new_unpad:  # resize
 | 
						||
                    image = cv2.resize(image, new_unpad, interpolation=cv2.INTER_LINEAR)
 | 
						||
                top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
 | 
						||
                left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
 | 
						||
        
 | 
						||
                new_image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(128, 128, 128))  # add border
 | 
						||
            else:
 | 
						||
                new_image = cv2.resize(image, (w, h))
 | 
						||
 | 
						||
        return new_image
 | 
						||
 
 | 
						||
    def detect_image(self, image):
 | 
						||
        image_shape = np.array(np.shape(image)[0:2])
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   在这里将图像转换成RGB图像,防止灰度图在预测时报错。
 | 
						||
        #   代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image       = cvtColor(image)
 | 
						||
 
 | 
						||
        image_data  = self.resize_image(image, self.input_shape, True)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   添加上batch_size维度
 | 
						||
        #   h, w, 3 => 3, h, w => 1, 3, h, w
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        image_data  = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), (2, 0, 1)), 0)
 | 
						||
 
 | 
						||
        input_feed  = self.get_input_feed(image_data)
 | 
						||
        outputs     = self.onnx_session.run(output_names=self.output_name, input_feed=input_feed)
 | 
						||
 | 
						||
        feature_map_shape   = [[int(j / (2 ** (i + 3))) for j in self.input_shape] for i in range(len(self.anchors_mask))][::-1]
 | 
						||
        for i in range(len(self.anchors_mask)):
 | 
						||
            outputs[i] = np.reshape(outputs[i], (1, len(self.anchors_mask[i]) * (5 + self.num_classes), feature_map_shape[i][0], feature_map_shape[i][1]))
 | 
						||
        
 | 
						||
        outputs = self.bbox_util.decode_box(outputs)
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   将预测框进行堆叠,然后进行非极大抑制
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        results = self.bbox_util.non_max_suppression(np.concatenate(outputs, 1), self.num_classes, self.input_shape, 
 | 
						||
                    image_shape, self.letterbox_image, conf_thres = self.confidence, nms_thres = self.nms_iou)
 | 
						||
                                                
 | 
						||
        if results[0] is None: 
 | 
						||
            return image
 | 
						||
 | 
						||
        top_label   = np.array(results[0][:, 6], dtype = 'int32')
 | 
						||
        top_conf    = results[0][:, 4] * results[0][:, 5]
 | 
						||
        top_boxes   = results[0][:, :4]
 | 
						||
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   设置字体与边框厚度
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        font        = ImageFont.truetype(font='model_data/simhei.ttf', size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
 | 
						||
        thickness   = int(max((image.size[0] + image.size[1]) // np.mean(self.input_shape), 1))
 | 
						||
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        #   图像绘制
 | 
						||
        #---------------------------------------------------------#
 | 
						||
        for i, c in list(enumerate(top_label)):
 | 
						||
            predicted_class = self.class_names[int(c)]
 | 
						||
            box             = top_boxes[i]
 | 
						||
            score           = top_conf[i]
 | 
						||
 | 
						||
            top, left, bottom, right = box
 | 
						||
 | 
						||
            top     = max(0, np.floor(top).astype('int32'))
 | 
						||
            left    = max(0, np.floor(left).astype('int32'))
 | 
						||
            bottom  = min(image.size[1], np.floor(bottom).astype('int32'))
 | 
						||
            right   = min(image.size[0], np.floor(right).astype('int32'))
 | 
						||
 | 
						||
            label = '{} {:.2f}'.format(predicted_class, score)
 | 
						||
            draw = ImageDraw.Draw(image)
 | 
						||
            label_size = draw.textsize(label, font)
 | 
						||
            label = label.encode('utf-8')
 | 
						||
            print(label, top, left, bottom, right)
 | 
						||
            
 | 
						||
            if top - label_size[1] >= 0:
 | 
						||
                text_origin = np.array([left, top - label_size[1]])
 | 
						||
            else:
 | 
						||
                text_origin = np.array([left, top + 1])
 | 
						||
 | 
						||
            for i in range(thickness):
 | 
						||
                draw.rectangle([left + i, top + i, right - i, bottom - i], outline=self.colors[c])
 | 
						||
            draw.rectangle([tuple(text_origin), tuple(text_origin + label_size)], fill=self.colors[c])
 | 
						||
            draw.text(text_origin, str(label,'UTF-8'), fill=(0, 0, 0), font=font)
 | 
						||
            del draw
 | 
						||
 | 
						||
        return image |