638 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			638 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						||
import torch
 | 
						||
from torchvision.ops import nms
 | 
						||
 | 
						||
 | 
						||
class DecodeBox():
 | 
						||
    def __init__(self, anchors, num_classes, input_shape, anchors_mask = [[6,7,8], [3,4,5], [0,1,2]]):
 | 
						||
        super(DecodeBox, self).__init__()
 | 
						||
        self.anchors        = anchors
 | 
						||
        self.num_classes    = num_classes
 | 
						||
        self.bbox_attrs     = 5 + num_classes
 | 
						||
        self.input_shape    = input_shape
 | 
						||
        #-----------------------------------------------------------#
 | 
						||
        #   20x20的特征层对应的anchor是[116,90],[156,198],[373,326]
 | 
						||
        #   40x40的特征层对应的anchor是[30,61],[62,45],[59,119]
 | 
						||
        #   80x80的特征层对应的anchor是[10,13],[16,30],[33,23]
 | 
						||
        #-----------------------------------------------------------#
 | 
						||
        self.anchors_mask   = anchors_mask
 | 
						||
 | 
						||
    def decode_box(self, inputs):
 | 
						||
        outputs = []
 | 
						||
        for i, input in enumerate(inputs):
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   输入的input一共有三个,他们的shape分别是
 | 
						||
            #   batch_size = 1
 | 
						||
            #   batch_size, 3 * (4 + 1 + 80), 20, 20
 | 
						||
            #   batch_size, 255, 40, 40
 | 
						||
            #   batch_size, 255, 80, 80
 | 
						||
            #-----------------------------------------------#
 | 
						||
            batch_size      = input.size(0)
 | 
						||
            input_height    = input.size(2)
 | 
						||
            input_width     = input.size(3)
 | 
						||
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   输入为640x640时
 | 
						||
            #   stride_h = stride_w = 32、16、8
 | 
						||
            #-----------------------------------------------#
 | 
						||
            stride_h = self.input_shape[0] / input_height
 | 
						||
            stride_w = self.input_shape[1] / input_width
 | 
						||
            #-------------------------------------------------#
 | 
						||
            #   此时获得的scaled_anchors大小是相对于特征层的
 | 
						||
            #-------------------------------------------------#
 | 
						||
            scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in self.anchors[self.anchors_mask[i]]]
 | 
						||
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   输入的input一共有三个,他们的shape分别是
 | 
						||
            #   batch_size, 3, 20, 20, 85
 | 
						||
            #   batch_size, 3, 40, 40, 85
 | 
						||
            #   batch_size, 3, 80, 80, 85
 | 
						||
            #-----------------------------------------------#
 | 
						||
            prediction = input.view(batch_size, len(self.anchors_mask[i]),
 | 
						||
                                    self.bbox_attrs, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous()
 | 
						||
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   先验框的中心位置的调整参数
 | 
						||
            #-----------------------------------------------#
 | 
						||
            x = torch.sigmoid(prediction[..., 0])  
 | 
						||
            y = torch.sigmoid(prediction[..., 1])
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   先验框的宽高调整参数
 | 
						||
            #-----------------------------------------------#
 | 
						||
            w = torch.sigmoid(prediction[..., 2]) 
 | 
						||
            h = torch.sigmoid(prediction[..., 3]) 
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   获得置信度,是否有物体
 | 
						||
            #-----------------------------------------------#
 | 
						||
            conf        = torch.sigmoid(prediction[..., 4])
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   种类置信度
 | 
						||
            #-----------------------------------------------#
 | 
						||
            pred_cls    = torch.sigmoid(prediction[..., 5:])
 | 
						||
 | 
						||
            FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
 | 
						||
            LongTensor  = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   生成网格,先验框中心,网格左上角 
 | 
						||
            #   batch_size,3,20,20
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            grid_x = torch.linspace(0, input_width - 1, input_width).repeat(input_height, 1).repeat(
 | 
						||
                batch_size * len(self.anchors_mask[i]), 1, 1).view(x.shape).type(FloatTensor)
 | 
						||
            grid_y = torch.linspace(0, input_height - 1, input_height).repeat(input_width, 1).t().repeat(
 | 
						||
                batch_size * len(self.anchors_mask[i]), 1, 1).view(y.shape).type(FloatTensor)
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   按照网格格式生成先验框的宽高
 | 
						||
            #   batch_size,3,20,20
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
 | 
						||
            anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
 | 
						||
            anchor_w = anchor_w.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(w.shape)
 | 
						||
            anchor_h = anchor_h.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(h.shape)
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   利用预测结果对先验框进行调整
 | 
						||
            #   首先调整先验框的中心,从先验框中心向右下角偏移
 | 
						||
            #   再调整先验框的宽高。
 | 
						||
            #   x 0 ~ 1 => 0 ~ 2 => -0.5, 1.5 => 负责一定范围的目标的预测
 | 
						||
            #   y 0 ~ 1 => 0 ~ 2 => -0.5, 1.5 => 负责一定范围的目标的预测
 | 
						||
            #   w 0 ~ 1 => 0 ~ 2 => 0 ~ 4 => 先验框的宽高调节范围为0~4倍
 | 
						||
            #   h 0 ~ 1 => 0 ~ 2 => 0 ~ 4 => 先验框的宽高调节范围为0~4倍
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            pred_boxes          = FloatTensor(prediction[..., :4].shape)
 | 
						||
            pred_boxes[..., 0]  = x.data * 2. - 0.5 + grid_x
 | 
						||
            pred_boxes[..., 1]  = y.data * 2. - 0.5 + grid_y
 | 
						||
            pred_boxes[..., 2]  = (w.data * 2) ** 2 * anchor_w
 | 
						||
            pred_boxes[..., 3]  = (h.data * 2) ** 2 * anchor_h
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   将输出结果归一化成小数的形式
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            _scale = torch.Tensor([input_width, input_height, input_width, input_height]).type(FloatTensor)
 | 
						||
            output = torch.cat((pred_boxes.view(batch_size, -1, 4) / _scale,
 | 
						||
                                conf.view(batch_size, -1, 1), pred_cls.view(batch_size, -1, self.num_classes)), -1)
 | 
						||
            outputs.append(output.data)
 | 
						||
        return outputs
 | 
						||
 | 
						||
    def yolo_correct_boxes(self, box_xy, box_wh, input_shape, image_shape, letterbox_image):
 | 
						||
        #-----------------------------------------------------------------#
 | 
						||
        #   把y轴放前面是因为方便预测框和图像的宽高进行相乘
 | 
						||
        #-----------------------------------------------------------------#
 | 
						||
        box_yx = box_xy[..., ::-1]
 | 
						||
        box_hw = box_wh[..., ::-1]
 | 
						||
        input_shape = np.array(input_shape)
 | 
						||
        image_shape = np.array(image_shape)
 | 
						||
 | 
						||
        if letterbox_image:
 | 
						||
            #-----------------------------------------------------------------#
 | 
						||
            #   这里求出来的offset是图像有效区域相对于图像左上角的偏移情况
 | 
						||
            #   new_shape指的是宽高缩放情况
 | 
						||
            #-----------------------------------------------------------------#
 | 
						||
            new_shape = np.round(image_shape * np.min(input_shape/image_shape))
 | 
						||
            offset  = (input_shape - new_shape)/2./input_shape
 | 
						||
            scale   = input_shape/new_shape
 | 
						||
 | 
						||
            box_yx  = (box_yx - offset) * scale
 | 
						||
            box_hw *= scale
 | 
						||
 | 
						||
        box_mins    = box_yx - (box_hw / 2.)
 | 
						||
        box_maxes   = box_yx + (box_hw / 2.)
 | 
						||
        boxes  = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]], axis=-1)
 | 
						||
        boxes *= np.concatenate([image_shape, image_shape], axis=-1)
 | 
						||
        return boxes
 | 
						||
 | 
						||
    def non_max_suppression(self, prediction, num_classes, input_shape, image_shape, letterbox_image, conf_thres=0.5, nms_thres=0.4):
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        #   将预测结果的格式转换成左上角右下角的格式。
 | 
						||
        #   prediction  [batch_size, num_anchors, 85]
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        box_corner          = prediction.new(prediction.shape)
 | 
						||
        box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
 | 
						||
        box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
 | 
						||
        box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
 | 
						||
        box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
 | 
						||
        prediction[:, :, :4] = box_corner[:, :, :4]
 | 
						||
 | 
						||
        output = [None for _ in range(len(prediction))]
 | 
						||
        for i, image_pred in enumerate(prediction):
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   对种类预测部分取max。
 | 
						||
            #   class_conf  [num_anchors, 1]    种类置信度
 | 
						||
            #   class_pred  [num_anchors, 1]    种类
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            class_conf, class_pred = torch.max(image_pred[:, 5:5 + num_classes], 1, keepdim=True)
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   利用置信度进行第一轮筛选
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            conf_mask = (image_pred[:, 4] * class_conf[:, 0] >= conf_thres).squeeze()
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   根据置信度进行预测结果的筛选
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            image_pred = image_pred[conf_mask]
 | 
						||
            class_conf = class_conf[conf_mask]
 | 
						||
            class_pred = class_pred[conf_mask]
 | 
						||
            if not image_pred.size(0):
 | 
						||
                continue
 | 
						||
            #-------------------------------------------------------------------------#
 | 
						||
            #   detections  [num_anchors, 7]
 | 
						||
            #   7的内容为:x1, y1, x2, y2, obj_conf, class_conf, class_pred
 | 
						||
            #-------------------------------------------------------------------------#
 | 
						||
            detections = torch.cat((image_pred[:, :5], class_conf.float(), class_pred.float()), 1)
 | 
						||
 | 
						||
            #------------------------------------------#
 | 
						||
            #   获得预测结果中包含的所有种类
 | 
						||
            #------------------------------------------#
 | 
						||
            unique_labels = detections[:, -1].cpu().unique()
 | 
						||
 | 
						||
            if prediction.is_cuda:
 | 
						||
                unique_labels = unique_labels.cuda()
 | 
						||
                detections = detections.cuda()
 | 
						||
 | 
						||
            for c in unique_labels:
 | 
						||
                #------------------------------------------#
 | 
						||
                #   获得某一类得分筛选后全部的预测结果
 | 
						||
                #------------------------------------------#
 | 
						||
                detections_class = detections[detections[:, -1] == c]
 | 
						||
 | 
						||
                #------------------------------------------#
 | 
						||
                #   使用官方自带的非极大抑制会速度更快一些!
 | 
						||
                #   筛选出一定区域内,属于同一种类得分最大的框
 | 
						||
                #------------------------------------------#
 | 
						||
                keep = nms(
 | 
						||
                    detections_class[:, :4],
 | 
						||
                    detections_class[:, 4] * detections_class[:, 5],
 | 
						||
                    nms_thres
 | 
						||
                )
 | 
						||
                max_detections = detections_class[keep]
 | 
						||
                
 | 
						||
                # # 按照存在物体的置信度排序
 | 
						||
                # _, conf_sort_index = torch.sort(detections_class[:, 4]*detections_class[:, 5], descending=True)
 | 
						||
                # detections_class = detections_class[conf_sort_index]
 | 
						||
                # # 进行非极大抑制
 | 
						||
                # max_detections = []
 | 
						||
                # while detections_class.size(0):
 | 
						||
                #     # 取出这一类置信度最高的,一步一步往下判断,判断重合程度是否大于nms_thres,如果是则去除掉
 | 
						||
                #     max_detections.append(detections_class[0].unsqueeze(0))
 | 
						||
                #     if len(detections_class) == 1:
 | 
						||
                #         break
 | 
						||
                #     ious = bbox_iou(max_detections[-1], detections_class[1:])
 | 
						||
                #     detections_class = detections_class[1:][ious < nms_thres]
 | 
						||
                # # 堆叠
 | 
						||
                # max_detections = torch.cat(max_detections).data
 | 
						||
                
 | 
						||
                # Add max detections to outputs
 | 
						||
                output[i] = max_detections if output[i] is None else torch.cat((output[i], max_detections))
 | 
						||
            
 | 
						||
            if output[i] is not None:
 | 
						||
                output[i]           = output[i].cpu().numpy()
 | 
						||
                box_xy, box_wh      = (output[i][:, 0:2] + output[i][:, 2:4])/2, output[i][:, 2:4] - output[i][:, 0:2]
 | 
						||
                output[i][:, :4]    = self.yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image)
 | 
						||
        return output
 | 
						||
 | 
						||
 | 
						||
class DecodeBoxNP():
 | 
						||
    def __init__(self, anchors, num_classes, input_shape, anchors_mask = [[6,7,8], [3,4,5], [0,1,2]]):
 | 
						||
        super(DecodeBoxNP, self).__init__()
 | 
						||
        self.anchors        = anchors
 | 
						||
        self.num_classes    = num_classes
 | 
						||
        self.bbox_attrs     = 5 + num_classes
 | 
						||
        self.input_shape    = input_shape
 | 
						||
        self.anchors_mask   = anchors_mask
 | 
						||
 | 
						||
    def sigmoid(self, x):
 | 
						||
        return 1 / (1 + np.exp(-x))
 | 
						||
 | 
						||
    def decode_box(self, inputs):
 | 
						||
        outputs = []
 | 
						||
        for i, input in enumerate(inputs):
 | 
						||
            batch_size      = np.shape(input)[0]
 | 
						||
            input_height    = np.shape(input)[2]
 | 
						||
            input_width     = np.shape(input)[3]
 | 
						||
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   输入为640x640时
 | 
						||
            #   stride_h = stride_w = 32、16、8
 | 
						||
            #-----------------------------------------------#
 | 
						||
            stride_h = self.input_shape[0] / input_height
 | 
						||
            stride_w = self.input_shape[1] / input_width
 | 
						||
            #-------------------------------------------------#
 | 
						||
            #   此时获得的scaled_anchors大小是相对于特征层的
 | 
						||
            #-------------------------------------------------#
 | 
						||
            scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in self.anchors[self.anchors_mask[i]]]
 | 
						||
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   输入的input一共有三个,他们的shape分别是
 | 
						||
            #   batch_size, 3, 20, 20, 85
 | 
						||
            #   batch_size, 3, 40, 40, 85
 | 
						||
            #   batch_size, 3, 80, 80, 85
 | 
						||
            #-----------------------------------------------#
 | 
						||
            prediction = np.transpose(np.reshape(input, (batch_size, len(self.anchors_mask[i]), self.bbox_attrs, input_height, input_width)), (0, 1, 3, 4, 2))
 | 
						||
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   先验框的中心位置的调整参数
 | 
						||
            #-----------------------------------------------#
 | 
						||
            x = self.sigmoid(prediction[..., 0])  
 | 
						||
            y = self.sigmoid(prediction[..., 1])
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   先验框的宽高调整参数
 | 
						||
            #-----------------------------------------------#
 | 
						||
            w = self.sigmoid(prediction[..., 2]) 
 | 
						||
            h = self.sigmoid(prediction[..., 3]) 
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   获得置信度,是否有物体
 | 
						||
            #-----------------------------------------------#
 | 
						||
            conf        = self.sigmoid(prediction[..., 4])
 | 
						||
            #-----------------------------------------------#
 | 
						||
            #   种类置信度
 | 
						||
            #-----------------------------------------------#
 | 
						||
            pred_cls    = self.sigmoid(prediction[..., 5:])
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   生成网格,先验框中心,网格左上角 
 | 
						||
            #   batch_size,3,20,20
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            grid_x = np.repeat(np.expand_dims(np.repeat(np.expand_dims(np.linspace(0, input_width - 1, input_width), 0), input_height, axis=0), 0), batch_size * len(self.anchors_mask[i]), axis=0)
 | 
						||
            grid_x = np.reshape(grid_x, np.shape(x))
 | 
						||
            grid_y = np.repeat(np.expand_dims(np.repeat(np.expand_dims(np.linspace(0, input_height - 1, input_height), 0), input_width, axis=0).T, 0), batch_size * len(self.anchors_mask[i]), axis=0)
 | 
						||
            grid_y = np.reshape(grid_y, np.shape(y))
 | 
						||
    
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   按照网格格式生成先验框的宽高
 | 
						||
            #   batch_size,3,20,20
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            anchor_w = np.repeat(np.expand_dims(np.repeat(np.expand_dims(np.array(scaled_anchors)[:, 0], 0), batch_size, axis=0), -1), input_height * input_width, axis=-1)
 | 
						||
            anchor_h = np.repeat(np.expand_dims(np.repeat(np.expand_dims(np.array(scaled_anchors)[:, 1], 0), batch_size, axis=0), -1), input_height * input_width, axis=-1)
 | 
						||
            anchor_w = np.reshape(anchor_w, np.shape(w))
 | 
						||
            anchor_h = np.reshape(anchor_h, np.shape(h))
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   利用预测结果对先验框进行调整
 | 
						||
            #   首先调整先验框的中心,从先验框中心向右下角偏移
 | 
						||
            #   再调整先验框的宽高。
 | 
						||
            #   x 0 ~ 1 => 0 ~ 2 => -0.5, 1.5 => 负责一定范围的目标的预测
 | 
						||
            #   y 0 ~ 1 => 0 ~ 2 => -0.5, 1.5 => 负责一定范围的目标的预测
 | 
						||
            #   w 0 ~ 1 => 0 ~ 2 => 0 ~ 4 => 先验框的宽高调节范围为0~4倍
 | 
						||
            #   h 0 ~ 1 => 0 ~ 2 => 0 ~ 4 => 先验框的宽高调节范围为0~4倍
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            pred_boxes          = np.zeros(np.shape(prediction[..., :4]))
 | 
						||
            pred_boxes[..., 0]  = x * 2. - 0.5 + grid_x
 | 
						||
            pred_boxes[..., 1]  = y * 2. - 0.5 + grid_y
 | 
						||
            pred_boxes[..., 2]  = (w * 2) ** 2 * anchor_w
 | 
						||
            pred_boxes[..., 3]  = (h * 2) ** 2 * anchor_h
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   将输出结果归一化成小数的形式
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            _scale = np.array([input_width, input_height, input_width, input_height])
 | 
						||
            output = np.concatenate([np.reshape(pred_boxes, (batch_size, -1, 4)) / _scale,
 | 
						||
                                np.reshape(conf, (batch_size, -1, 1)), np.reshape(pred_cls, (batch_size, -1, self.num_classes))], -1)
 | 
						||
            outputs.append(output)
 | 
						||
        return outputs
 | 
						||
    
 | 
						||
    def bbox_iou(self, box1, box2, x1y1x2y2=True):
 | 
						||
        """
 | 
						||
            计算IOU
 | 
						||
        """
 | 
						||
        if not x1y1x2y2:
 | 
						||
            b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2
 | 
						||
            b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2
 | 
						||
            b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2
 | 
						||
            b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2
 | 
						||
        else:
 | 
						||
            b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3]
 | 
						||
            b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3]
 | 
						||
 | 
						||
        inter_rect_x1 = np.maximum(b1_x1, b2_x1)
 | 
						||
        inter_rect_y1 = np.maximum(b1_y1, b2_y1)
 | 
						||
        inter_rect_x2 = np.minimum(b1_x2, b2_x2)
 | 
						||
        inter_rect_y2 = np.minimum(b1_y2, b2_y2)
 | 
						||
 | 
						||
        inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * \
 | 
						||
                    np.maximum(inter_rect_y2 - inter_rect_y1, 0)
 | 
						||
                    
 | 
						||
        b1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
 | 
						||
        b2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
 | 
						||
        
 | 
						||
        iou = inter_area / np.maximum(b1_area + b2_area - inter_area, 1e-6)
 | 
						||
 | 
						||
        return iou
 | 
						||
 | 
						||
    def yolo_correct_boxes(self, box_xy, box_wh, input_shape, image_shape, letterbox_image):
 | 
						||
        #-----------------------------------------------------------------#
 | 
						||
        #   把y轴放前面是因为方便预测框和图像的宽高进行相乘
 | 
						||
        #-----------------------------------------------------------------#
 | 
						||
        box_yx = box_xy[..., ::-1]
 | 
						||
        box_hw = box_wh[..., ::-1]
 | 
						||
        input_shape = np.array(input_shape)
 | 
						||
        image_shape = np.array(image_shape)
 | 
						||
 | 
						||
        if letterbox_image:
 | 
						||
            #-----------------------------------------------------------------#
 | 
						||
            #   这里求出来的offset是图像有效区域相对于图像左上角的偏移情况
 | 
						||
            #   new_shape指的是宽高缩放情况
 | 
						||
            #-----------------------------------------------------------------#
 | 
						||
            new_shape = np.round(image_shape * np.min(input_shape/image_shape))
 | 
						||
            offset  = (input_shape - new_shape)/2./input_shape
 | 
						||
            scale   = input_shape/new_shape
 | 
						||
 | 
						||
            box_yx  = (box_yx - offset) * scale
 | 
						||
            box_hw *= scale
 | 
						||
 | 
						||
        box_mins    = box_yx - (box_hw / 2.)
 | 
						||
        box_maxes   = box_yx + (box_hw / 2.)
 | 
						||
        boxes  = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]], axis=-1)
 | 
						||
        boxes *= np.concatenate([image_shape, image_shape], axis=-1)
 | 
						||
        return boxes
 | 
						||
 | 
						||
    def non_max_suppression(self, prediction, num_classes, input_shape, image_shape, letterbox_image, conf_thres=0.5, nms_thres=0.4):
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        #   将预测结果的格式转换成左上角右下角的格式。
 | 
						||
        #   prediction  [batch_size, num_anchors, 85]
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        box_corner          = np.zeros_like(prediction)
 | 
						||
        box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
 | 
						||
        box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
 | 
						||
        box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
 | 
						||
        box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
 | 
						||
        prediction[:, :, :4] = box_corner[:, :, :4]
 | 
						||
 | 
						||
        output = [None for _ in range(len(prediction))]
 | 
						||
        for i, image_pred in enumerate(prediction):
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   对种类预测部分取max。
 | 
						||
            #   class_conf  [num_anchors, 1]    种类置信度
 | 
						||
            #   class_pred  [num_anchors, 1]    种类
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            class_conf = np.max(image_pred[:, 5:5 + num_classes], 1, keepdims=True)
 | 
						||
            class_pred = np.expand_dims(np.argmax(image_pred[:, 5:5 + num_classes], 1), -1)
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   利用置信度进行第一轮筛选
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            conf_mask = np.squeeze((image_pred[:, 4] * class_conf[:, 0] >= conf_thres))
 | 
						||
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            #   根据置信度进行预测结果的筛选
 | 
						||
            #----------------------------------------------------------#
 | 
						||
            image_pred = image_pred[conf_mask]
 | 
						||
            class_conf = class_conf[conf_mask]
 | 
						||
            class_pred = class_pred[conf_mask]
 | 
						||
            if not np.shape(image_pred)[0]:
 | 
						||
                continue
 | 
						||
            #-------------------------------------------------------------------------#
 | 
						||
            #   detections  [num_anchors, 7]
 | 
						||
            #   7的内容为:x1, y1, x2, y2, obj_conf, class_conf, class_pred
 | 
						||
            #-------------------------------------------------------------------------#
 | 
						||
            detections = np.concatenate((image_pred[:, :5], class_conf, class_pred), 1)
 | 
						||
 | 
						||
            #------------------------------------------#
 | 
						||
            #   获得预测结果中包含的所有种类
 | 
						||
            #------------------------------------------#
 | 
						||
            unique_labels = np.unique(detections[:, -1])
 | 
						||
 | 
						||
            for c in unique_labels:
 | 
						||
                #------------------------------------------#
 | 
						||
                #   获得某一类得分筛选后全部的预测结果
 | 
						||
                #------------------------------------------#
 | 
						||
                detections_class = detections[detections[:, -1] == c]
 | 
						||
 | 
						||
                # 按照存在物体的置信度排序
 | 
						||
                conf_sort_index     = np.argsort(detections_class[:, 4] * detections_class[:, 5])[::-1]
 | 
						||
                detections_class    = detections_class[conf_sort_index]
 | 
						||
                # 进行非极大抑制
 | 
						||
                max_detections = []
 | 
						||
                while np.shape(detections_class)[0]:
 | 
						||
                    # 取出这一类置信度最高的,一步一步往下判断,判断重合程度是否大于nms_thres,如果是则去除掉
 | 
						||
                    max_detections.append(detections_class[0:1])
 | 
						||
                    if len(detections_class) == 1:
 | 
						||
                        break
 | 
						||
                    ious                = self.bbox_iou(max_detections[-1], detections_class[1:])
 | 
						||
                    detections_class    = detections_class[1:][ious < nms_thres]
 | 
						||
                # 堆叠
 | 
						||
                max_detections = np.concatenate(max_detections, 0)
 | 
						||
                
 | 
						||
                # Add max detections to outputs
 | 
						||
                output[i] = max_detections if output[i] is None else np.concatenate((output[i], max_detections))
 | 
						||
            
 | 
						||
            if output[i] is not None:
 | 
						||
                output[i]           = output[i]
 | 
						||
                box_xy, box_wh      = (output[i][:, 0:2] + output[i][:, 2:4])/2, output[i][:, 2:4] - output[i][:, 0:2]
 | 
						||
                output[i][:, :4]    = self.yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image)
 | 
						||
        return output
 | 
						||
    
 | 
						||
 | 
						||
if __name__ == "__main__":
 | 
						||
    import matplotlib.pyplot as plt
 | 
						||
    import numpy as np
 | 
						||
 | 
						||
    #---------------------------------------------------#
 | 
						||
    #   将预测值的每个特征层调成真实值
 | 
						||
    #---------------------------------------------------#
 | 
						||
    def get_anchors_and_decode(input, input_shape, anchors, anchors_mask, num_classes):
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   input   batch_size, 3 * (4 + 1 + num_classes), 20, 20
 | 
						||
        #-----------------------------------------------#
 | 
						||
        batch_size      = input.size(0)
 | 
						||
        input_height    = input.size(2)
 | 
						||
        input_width     = input.size(3)
 | 
						||
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   输入为640x640时 input_shape = [640, 640]  input_height = 20, input_width = 20
 | 
						||
        #   640 / 20 = 32
 | 
						||
        #   stride_h = stride_w = 32
 | 
						||
        #-----------------------------------------------#
 | 
						||
        stride_h = input_shape[0] / input_height
 | 
						||
        stride_w = input_shape[1] / input_width
 | 
						||
        #-------------------------------------------------#
 | 
						||
        #   此时获得的scaled_anchors大小是相对于特征层的
 | 
						||
        #   anchor_width, anchor_height / stride_h, stride_w
 | 
						||
        #-------------------------------------------------#
 | 
						||
        scaled_anchors = [(anchor_width / stride_w, anchor_height / stride_h) for anchor_width, anchor_height in anchors[anchors_mask[2]]]
 | 
						||
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   batch_size, 3 * (4 + 1 + num_classes), 20, 20 => 
 | 
						||
        #   batch_size, 3, 5 + num_classes, 20, 20  => 
 | 
						||
        #   batch_size, 3, 20, 20, 4 + 1 + num_classes
 | 
						||
        #-----------------------------------------------#
 | 
						||
        prediction = input.view(batch_size, len(anchors_mask[2]),
 | 
						||
                                num_classes + 5, input_height, input_width).permute(0, 1, 3, 4, 2).contiguous()
 | 
						||
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   先验框的中心位置的调整参数
 | 
						||
        #-----------------------------------------------#
 | 
						||
        x = torch.sigmoid(prediction[..., 0])  
 | 
						||
        y = torch.sigmoid(prediction[..., 1])
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   先验框的宽高调整参数
 | 
						||
        #-----------------------------------------------#
 | 
						||
        w = torch.sigmoid(prediction[..., 2]) 
 | 
						||
        h = torch.sigmoid(prediction[..., 3]) 
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   获得置信度,是否有物体 0 - 1
 | 
						||
        #-----------------------------------------------#
 | 
						||
        conf        = torch.sigmoid(prediction[..., 4])
 | 
						||
        #-----------------------------------------------#
 | 
						||
        #   种类置信度 0 - 1
 | 
						||
        #-----------------------------------------------#
 | 
						||
        pred_cls    = torch.sigmoid(prediction[..., 5:])
 | 
						||
 | 
						||
        FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
 | 
						||
        LongTensor  = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor
 | 
						||
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        #   生成网格,先验框中心,网格左上角 
 | 
						||
        #   batch_size,3,20,20
 | 
						||
        #   range(20)
 | 
						||
        #   [
 | 
						||
        #       [0, 1, 2, 3 ……, 19], 
 | 
						||
        #       [0, 1, 2, 3 ……, 19], 
 | 
						||
        #       …… (20次)
 | 
						||
        #       [0, 1, 2, 3 ……, 19]
 | 
						||
        #   ] * (batch_size * 3)
 | 
						||
        #   [batch_size, 3, 20, 20]
 | 
						||
        #   
 | 
						||
        #   [
 | 
						||
        #       [0, 1, 2, 3 ……, 19], 
 | 
						||
        #       [0, 1, 2, 3 ……, 19], 
 | 
						||
        #       …… (20次)
 | 
						||
        #       [0, 1, 2, 3 ……, 19]
 | 
						||
        #   ].T * (batch_size * 3)
 | 
						||
        #   [batch_size, 3, 20, 20]
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        grid_x = torch.linspace(0, input_width - 1, input_width).repeat(input_height, 1).repeat(
 | 
						||
            batch_size * len(anchors_mask[2]), 1, 1).view(x.shape).type(FloatTensor)
 | 
						||
        grid_y = torch.linspace(0, input_height - 1, input_height).repeat(input_width, 1).t().repeat(
 | 
						||
            batch_size * len(anchors_mask[2]), 1, 1).view(y.shape).type(FloatTensor)
 | 
						||
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        #   按照网格格式生成先验框的宽高
 | 
						||
        #   batch_size, 3, 20 * 20 => batch_size, 3, 20, 20
 | 
						||
        #   batch_size, 3, 20 * 20 => batch_size, 3, 20, 20
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
 | 
						||
        anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
 | 
						||
        anchor_w = anchor_w.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(w.shape)
 | 
						||
        anchor_h = anchor_h.repeat(batch_size, 1).repeat(1, 1, input_height * input_width).view(h.shape)
 | 
						||
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        #   利用预测结果对先验框进行调整
 | 
						||
        #   首先调整先验框的中心,从先验框中心向右下角偏移
 | 
						||
        #   再调整先验框的宽高。
 | 
						||
        #   x  0 ~ 1 => 0 ~ 2 => -0.5 ~ 1.5 + grid_x
 | 
						||
        #   y  0 ~ 1 => 0 ~ 2 => -0.5 ~ 1.5 + grid_y
 | 
						||
        #   w  0 ~ 1 => 0 ~ 2 => 0 ~ 4 * anchor_w
 | 
						||
        #   h  0 ~ 1 => 0 ~ 2 => 0 ~ 4 * anchor_h 
 | 
						||
        #----------------------------------------------------------#
 | 
						||
        pred_boxes          = FloatTensor(prediction[..., :4].shape)
 | 
						||
        pred_boxes[..., 0]  = x.data * 2. - 0.5 + grid_x
 | 
						||
        pred_boxes[..., 1]  = y.data * 2. - 0.5 + grid_y
 | 
						||
        pred_boxes[..., 2]  = (w.data * 2) ** 2 * anchor_w
 | 
						||
        pred_boxes[..., 3]  = (h.data * 2) ** 2 * anchor_h
 | 
						||
 | 
						||
        point_h = 5
 | 
						||
        point_w = 5
 | 
						||
        
 | 
						||
        box_xy          = pred_boxes[..., 0:2].cpu().numpy() * 32
 | 
						||
        box_wh          = pred_boxes[..., 2:4].cpu().numpy() * 32
 | 
						||
        grid_x          = grid_x.cpu().numpy() * 32
 | 
						||
        grid_y          = grid_y.cpu().numpy() * 32
 | 
						||
        anchor_w        = anchor_w.cpu().numpy() * 32
 | 
						||
        anchor_h        = anchor_h.cpu().numpy() * 32
 | 
						||
        
 | 
						||
        fig = plt.figure()
 | 
						||
        ax  = fig.add_subplot(121)
 | 
						||
        from PIL import Image
 | 
						||
        img = Image.open("img/street.jpg").resize([640, 640])
 | 
						||
        plt.imshow(img, alpha=0.5)
 | 
						||
        plt.ylim(-30, 650)
 | 
						||
        plt.xlim(-30, 650)
 | 
						||
        plt.scatter(grid_x, grid_y)
 | 
						||
        plt.scatter(point_h * 32, point_w * 32, c='black')
 | 
						||
        plt.gca().invert_yaxis()
 | 
						||
 | 
						||
        anchor_left = grid_x - anchor_w / 2
 | 
						||
        anchor_top  = grid_y - anchor_h / 2
 | 
						||
        
 | 
						||
        rect1 = plt.Rectangle([anchor_left[0, 0, point_h, point_w],anchor_top[0, 0, point_h, point_w]], \
 | 
						||
            anchor_w[0, 0, point_h, point_w],anchor_h[0, 0, point_h, point_w],color="r",fill=False)
 | 
						||
        rect2 = plt.Rectangle([anchor_left[0, 1, point_h, point_w],anchor_top[0, 1, point_h, point_w]], \
 | 
						||
            anchor_w[0, 1, point_h, point_w],anchor_h[0, 1, point_h, point_w],color="r",fill=False)
 | 
						||
        rect3 = plt.Rectangle([anchor_left[0, 2, point_h, point_w],anchor_top[0, 2, point_h, point_w]], \
 | 
						||
            anchor_w[0, 2, point_h, point_w],anchor_h[0, 2, point_h, point_w],color="r",fill=False)
 | 
						||
 | 
						||
        ax.add_patch(rect1)
 | 
						||
        ax.add_patch(rect2)
 | 
						||
        ax.add_patch(rect3)
 | 
						||
 | 
						||
        ax  = fig.add_subplot(122)
 | 
						||
        plt.imshow(img, alpha=0.5)
 | 
						||
        plt.ylim(-30, 650)
 | 
						||
        plt.xlim(-30, 650)
 | 
						||
        plt.scatter(grid_x, grid_y)
 | 
						||
        plt.scatter(point_h * 32, point_w * 32, c='black')
 | 
						||
        plt.scatter(box_xy[0, :, point_h, point_w, 0], box_xy[0, :, point_h, point_w, 1], c='r')
 | 
						||
        plt.gca().invert_yaxis()
 | 
						||
 | 
						||
        pre_left    = box_xy[...,0] - box_wh[...,0] / 2
 | 
						||
        pre_top     = box_xy[...,1] - box_wh[...,1] / 2
 | 
						||
 | 
						||
        rect1 = plt.Rectangle([pre_left[0, 0, point_h, point_w], pre_top[0, 0, point_h, point_w]],\
 | 
						||
            box_wh[0, 0, point_h, point_w,0], box_wh[0, 0, point_h, point_w,1],color="r",fill=False)
 | 
						||
        rect2 = plt.Rectangle([pre_left[0, 1, point_h, point_w], pre_top[0, 1, point_h, point_w]],\
 | 
						||
            box_wh[0, 1, point_h, point_w,0], box_wh[0, 1, point_h, point_w,1],color="r",fill=False)
 | 
						||
        rect3 = plt.Rectangle([pre_left[0, 2, point_h, point_w], pre_top[0, 2, point_h, point_w]],\
 | 
						||
            box_wh[0, 2, point_h, point_w,0], box_wh[0, 2, point_h, point_w,1],color="r",fill=False)
 | 
						||
 | 
						||
        ax.add_patch(rect1)
 | 
						||
        ax.add_patch(rect2)
 | 
						||
        ax.add_patch(rect3)
 | 
						||
 | 
						||
        plt.show()
 | 
						||
        #
 | 
						||
    feat            = torch.from_numpy(np.random.normal(0.2, 0.5, [4, 255, 20, 20])).float()
 | 
						||
    anchors         = np.array([[116, 90], [156, 198], [373, 326], [30,61], [62,45], [59,119], [10,13], [16,30], [33,23]])
 | 
						||
    anchors_mask    = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
 | 
						||
    get_anchors_and_decode(feat, [640, 640], anchors, anchors_mask, 80)
 |